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Preface 
to the 

Second Edition 

After the first publication of Dielectric Resonators by Artech House ran 
out of print, the book was reprinted by Vector Forum (formerly Vector 
Fields), and that version is also out of print now. As  the book has 
become a popular reference for microwave and RF engineers, it is hoped 
that the present Second Edition will be just as useful. 

The main part of the book, authored by Auda, Glisson, Guillon, Hanson, 
Kajfez, Khanna, and Michalski, remains unchanged. An additional 
chapter on software has been written, and a diskette has been integrat- 
ed with the Second Edition. The diskette contains several simple com- 
puter programs. These enable the user to estimate the resonant fre- 
quencies and observe the field plots for various resonant modes created 
in a typical dielectric resonator of the circular cross section. The source 
code is also provided, which can be incorporated into the reader's own 
programs (with proper acknowledgement). 

Improved understanding of dielectric resonators enables engineers to 
design filters, combiners, and oscillators of ever-improving quality and 
ever-reduced cost. The growing demand allows ceramic manufacturers 
to provide the market with ever-better materials of extremely low loss 
tangent and tighter tolerances on relative dielectric constant and on 
temperature coefficients. Recent developments indicate that dielectric 
resonators can also be used as antennas of very high efficiency, which 
may further increase demand. No matter what the major use of dielec- 
tric resonators will be in the future, the prerequisite for an intelligent 
application is an understanding of the basic principles of these devices. 
This book aims to provide that understanding. 

Darko Kajfez 
Oxford, Mississippi 

February 1998 





Chapter I 
INTRODUCTION 
Darko Kajfez 

Reducing the cost of microwave circuits goes hand in hand with 

reducing their size. In this respect, microstrip and stripline have 

been essential in eliminating bulky waveguides and rigid coaxial lines 

in a great majority of microwave systems. Only in a few and very 

demanding applications, such as high power transmission, or low-loss 

filtering, are waveguides still being used. A more recent advance in 

miniaturization of microwave circuits has been the appearance of the 

low-loss temperature-stable dielectric resonators. These dielectric 

resonators are used to replace waveguide filters in such demanding 

applications as satellite communications where microstrip and stripline 

resonators cannot be used because of their inherently high losses, 

Furthermore, carefully designed microwave oscillators which utilize 

dielectric resonators can equal the temperature stability of 

conventional microwave resonant cavities machined from invar. 

Handbooks and textbooks on microwave devices often devote many pages 

to the theory of hollow resonant cavities, but they provide little 

information on cavities containing dielectric resonators. On the other 

hand, the analysis and design of dielectric resonators are discussed 

extensively in many professional journals and conferences. The present 

book attempts to bring this knowledge together in an organized manner. 

The size of a dielectric resonator is considerably smaller than the 

size of an empty resonant cavity operating at the same frequency, 

provided the relative dielectric constant of the material is a number 

substantially larger than unity. Only recently, materials having a 

dielectric constant between 30 and 40 with good temperature stability 

and low dielectric losses have become available. 

The shape of a dielectric resonator is usually a short, solid 

cylinder, but one can also find tubular, spherical, and parallelepiped 
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shapes. A commonly used resonant mode in cylindrical dielectric 

resonators is denoted TEOl6 The magnetic field intensity for this mode 

is sketched in Fig. 1.1. For a distant observer this mode appears as a 

magnetic dipole, and for this reason some authors call it a "magnetic 

dipole mode," instead of using the term TEOl6 introduced by Cohn. The 

electric field lines are simple circles concentric with the axis of the 

Fig. 1.1 Magnetic field lines of the resonant mode TE016 in an 
isolated dielectric resonator 

cylinder. When the relative dielectric constant is around 40, more than 

95 % of the stored electric energy of TEOl6 mode, as well as a great 

part of the stored magnetic energy (typically over 60 %), are located 

within the cylinder. The remaining energy is distributed in the air 

around the resonator, decaying rapidly with distance away from the 

resonator surface. 

Although the geometrical form of a dielectric resonator is extremely 

simple, an exact solution of the Maxwell equations is considerably more 

difficult than for hollow metal cavities. This difficulty holds true 

for an isolated dielectric resonator such as shown in Fig. 1.1, and even 

more so for a dielectric resonator mounted on a microstrip, or placed 

within a shielding metal cavity. For this reason, the exact resonant 

frequency of a certain resonant mode, such as TEOl6, can only be 
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computed by rather complicated numerical procedures. For an approximate 

estimation of the resonant frequency of the isolated dielectric 

resonator, the following simple formula can be used: 

The radius of the resonator is denoted by a, and its length by L. The 

lengths are expressed in millimeters, and the frequency in gigahertz. 

The relative dielectric constant of the material is er. The above 

formula is accurate to about 2 % in the range 

0.5 < a/L < 2 and 30 < er < 50 

The formula has been obtained by fitting a straight line to the results 

of the numerical solution which is described in detail in Ch. 6. 

The simplest way to incorporate the dielectric resonator into a 

microwave network is placing it on top of a microstrip substrate as 

shown in Fig. 1.2. The lateral distance between the resonator and the 

microstrip conductor determines the amount of coupling between the 

resonator and the microstrip transmission line. In order to prevent 

losses due to radiation, the entire device is usually enclosed in a 

shielding box made of a metal, most often aluminum. 

Fig. 1.2 Dielectric resonator mounted on microstrip 



DIELECTRIC RESONATORS 

By bringing the metal enclosure close to the dielectric resonator, 

the resonant frequency of the TEOl6 mode is modified from the value 

given by (1.1) to a new, increased value. The reason for such behavior 

of the resonant frequency can be found in the cavity perturbation 

theory. Namely, when a metal wall of a resonant cavity is moved inward, 

the resonant frequency will decrease if the stored energy of the 

displaced field is predominantly electric. Otherwise, when the stored 

energy close to the metal wall is mostly magnetic, as is the case for 

the shielded TEOl6 dielectric resonator considered here, the resonant 

frequency will increase when the wall moves inward. 

The magnetic field of a dielectric resonator located inside a 

cylindrical metal cavity is shown in Fig. 1.3. The resonant mode is the 

same TEOl6 as in Fig. 1.1, but the field is obviously modified due to 

the presence of metal boundaries. The dielectric resonator shown here 

is made of material having a relative dielectric constant of 38-, resting 

on a substrate having a relative dielectric constant of 10. The size of 

the resonator (radius 5.25 mm and height 4.6 mm) is such that, in free 

space, its resonant frequency would be 4.83 G H z .  For the cavity shown 

in Fig. 1.3, the resonant frequency becomes 5.36 G H z .  The computational 

procedure which has been used to obtain these results is discussed in 

Ch. 5 of this book. 

As is the case with all resonant cavities, there are many possible 

resonant modes which can be excited in dielectric resonators. These 

modes can be divided into three main families: transverse electric 

(TE), transverse magnetic (TM), and hybrid electromagnetic (HEM) modes. 

Each of the three families has an infinite variety of individual modes 

so that one encounters the dilemma of which mode is best suited for a 

particular application. The TEOl6 mode from Fig. 1.1 is the one used 

traditionally, but for certain applications, such as for a dual-mode 

filter, the HEMll6 mode has definite advantages. Familiarity with 

individual lowest-order modes is very helpful in selecting the proper 

mode for a particular application, and also for knowing how to eliminate 

the undesired modes which degrade the performance of certain devices. 

This book is based on the notes for a short course on dielectric 

resonators at the University of Mississippi first presented in the 

spring of 1985 and is intended to provide microwave engineers with 

information on the design procedures of devices containing dielectric 

resonators. Such a presentation also requires an explanation of 
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Fig. 1.3 Dielectric resonator within a cylindrical metal cavity 

theoretical principles which have been used in deriving the practical 

results. A brief description of the book's contents is given in the 

following. 

Chapter 2 reviews the properties of microwave resonators and gives 

some examples of the most commonly used cavities. Computation and 

measurement of the Q factor are discussed in detail. 

Chapter 3 develops the description of the electromagnetic field in a 

dielectric rod waveguide. The solution of the Maxwell equations in this 

infinitely long structure is very similar to the well-known solutions 

for hollow metal waveguides. An important consequence of the field 

solution is the classification of modes which can propagate in this 
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structure. Field plots of several modes provide a physical 

understanding that is useful for later description of fields in actual 

dielectric resonators. 

Chapter 4 describes two simple approximate models of the 

electromagnetic field distribution in the dielectric resonator mounted 

on a microstrip. One is known as the Cohn model, and the other is 

called the Itoh and Rudokas model. With slight modifications to improve 

the accuracy, both models have been programmed for use on a personal 

computer. The program listings are given in Appendices 4.A and 4.B. 

For some practical applications, like the design of a dielectric 

resonator oscillator, the results obtained with approximate models may 

be entirely adequate. For other applications, such as in designing 

filters for satellite communications, it becomes necessary to use more 

sophisticated procedures for computing resonant frequencies and coupling 

parameters with sufficient accuracy. These high-precision procedures 

for evaluating the electromagnetic parameters of dielectric resonators 

in various environments are described in Ch. 5 and 6. 

Chapter 5 presents a review of rigorous methods of solving for the 

electromagnetic field in shielded dielectric resonators. The methods 

described are: the mode-matching (both radial and axial) method, the 

Green's function method, the perturbational method, and others. While 

the mathematical formulation in any of these methods is rather involved, 

once they are programmed on a computer, they provide rather accurate 

results. Chapter 5 presents sample results obtained by different 

authors in the form of diagrams which may be useful in design work. 

Numerical solution for the resonant modes in isolated dielectric 

resonators is presented in Ch. 6. The integral equation method, which 

is used in this case, is generally applicable because it handles 

radiation effects, applies to a dominant mode as well as any of the 

higher-order modes, and, finally, because the shape of the resonator 

does not have to be cylindrical, but instead may be an arbitrary body of 

revolution. The mode chart and the field plots for several lowest-order 

modes, generated by the computer, are also included in the chapter. 

Ceramic materials used for manufacturing dielectric resonators must 

have a very low loss tangent and a controllable temperature stability. 

Mathematical descriptions of these two properties, together with the 

procedures for their measurement, are given in Ch. 7. A table of data 

for commercially available materials can be found in Appendix 7.A. 
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The computation of coupling between the dielectric resonator and an 

external circuit is the topic of Ch. 8. The formulas and diagrams 

provide practical data for coupling of dielectric resonators to 

microstrips, inductive loops, to waveguides below cutoff, and finlines. 

Coupling through narrow irises and coupling between dual modes are also 

included. 

The application of dielectric resonators in designing microwave 

filters is the subject of Ch. 9. Band-pass and band-stop filters in 

microstrip and in rectangular waveguides are discussed. Design 

information is provided on special filters, like elliptic type and dual- 

mode filters. 

Chapter 10 provides comprehensive coverage of the design procedure 

for stable microwave transistor oscillators using dielectric resonators. 

The procedure utilizes measured three-port S-parameters of the 

transistor. Description of a procedure for measurement of oscillator 

performance with the network analyzer is also included in the chapter. 

It may be useful to explain briefly some mathematical symbols used 

in this book. Scalar quantities are described by the ordinary Roman and 

Greek letters, like Eo, p ,  7 ,  r ,  Sll No distinction in the notation is 

made between real and complex numbers. The asterisk * is used to denote 
a complex conjugate value. Three-dimensional field vectors are 

underlined, and the three-dimensional unit vectors wear a hat A as in 

Matrices carry a wavy underline symbol. For instance 

Column matrices (also called column vectors) are denoted by the Dirac 

symbol : 
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The conjugate transpose of la> is denoted by Gal, and i t  represents a 

row matrix (also called row vector): 

The preparation of notes for the short course on dielectric 

resonators, as well as their transformation into a manuscript: of thir 

book, was made possible through the support and encouragement of Dr. 

Charles E. Smith, Chairman of the Department of Electrical Engineering 

at the University of Mississippi. 

Some of the numerical and experimental results presented in Ch. 2, 

3, 4, 6, and 7 were obtained by Joseph James, Mihailo Crnadak, W. Perry 

Wheless, R. Todd Ward, and Man-Chun Yu. The majority of illustrations 

were drawn by M. Kris Aune and Michael G. Metcalfe. The difficult job 

of setting the text and formulas on a relatively inexpensive word 

processing system was accomplished by Priscilla Ragsdale. 

The author of this introductory chapter feels indebted to Dr. Ferdo 

Ivanek of Harris Corporation, Farinon Division, for instigating an 

interest in dielectric resonators and for his advice on problems of 

special importance for practical applications. 

Material presented in Ch. 4 and 6 is based upon work supported by 

the National Science Foundation under Grants E63-8304442 and ECS-8443558 

and performed at the Department of Electrical Engineering, University of 

Mississippi. The results in Ch. 8, 9, and parts of Ch. 10 originated 

from the work supported by the French government institutions CNET, 

CNES, CNRS, and DRET. Corresponding research was performed in the 

Laboratory of Optical and Microwave Communications at the University of 
Limoges . 



Chapter 2 
MICROWAM RESONATORS 

Donald E Hanson 

2.1 Introductiat3 
Resonators are i@+&f&&ttf C&pXWnt# in microwave communication 

circuits. They create, fijer, & sabct frequencies in oscillators, 

amplifiers, and tuners. ~ields $&it% er r@sonator store energy at the 

resonant frequency where equal storage (rf ekk?tric and magnetic energies 

occurs. The input impedance at resonance p~irely real since the 

reactance is proportional to the difference betw6a electric and 

magnetic energy storage. 

The Q factor is an important figure of merit for a remnant circuit. 

The Q factBr relate# a resonant circuit's capacity for electromagnetic 

energy stdtage with its energy dissipation through heat. Microwave Q 

factbrs cafl be eB high ar 10,000. At lower frequencies, the Q factor is 

usually betweefi 50 &d 400, Resonator bandwidth is inversely pro- 

portional to 4 &tar. %US, high Q factor resonators have narrow 

bandwidths. ResonS€Clfs an$ t h  Q factor and its measurement are 

discussed in this chapter. 
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2.2 Q Facto~ 

The figure of merit for assessing the performance or quality of a 

resonator is the quality factor, Q, which is a measure of energy loss or 

dissipation per cycle as compared to the energy stored in the fields 

inside the resonator. Q factor is defined by 

maximum enelgy storaee durine a cvcle 
Q = 2r average energy dissipated' per cycle 

where Wo is stored energy, P is power dissipation, wo is resonant radian 

frequency, and T is period = 2r/w 0' 
Some properties of resonators can be examined by starting with the 

differential equation for a simple resonator circuit: 

This can be obtained by proper manipulation of Maxwell's equations. 

When u = 0 in this equation, the homogeneous solution is 

v(t) = A sin w t + B cos w t 0 0 (2.3) 

The presence of o > 0 corresponds to a resonator with losses. Laplace 

transforming the equation and solving for the transfer function, one 

obtains 

The denominator can be factored to give 

where the loaded natural resonant frequency is 



MICROWAVE RESONATORS 

Thus, the presence of loss (o > 0) results in a change in resonant 
frequency. This is called frequency pulling due to loss. Note that 

W~ = Wo only when o = 0. 

The natural response of the differential equation is 

v(t) = v e-Ot sin w t L 

2 The stored energy W is proportional to the average value of v (t), which 

for small o is 

The average power P in the system is 

Therefore, 

Since Q = wOW/P, one obtains 

The loaded natural resonant frequency now becomes 

Substituting o = w0/2Q in the original differential equation, one 

obtains 

For a perfect resonator, Q -r a, and the first derivative drops out. For 

a practical resonator, Q is finite and the first derivative must be 

retained. 

For s = jw and o = w /2Q, the transfer function T(s) becomes 
0 
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The denominator in this expression can also be written as 

The w-dependence can be factored to give 

Since for high Q, w is very close to wo, w /w + 1 = 2. Therefore, 
0 

where 6 = (w - wO)/wO is the frequency tuning parameter [I]. The 

approximate transfer function then becomes 

The magnitude of the transfer function T(w) is a bell-shaped curve whose 

form is highly Q-dependent. 

The half-power bandwidth B is defined to be the frequency spread Aw, 

where Aw is defined by the difference in half-power frequencies wl and 

w2, where 

for w = wl and w = w2. Using the approximate transfer function, the 

above equation becomes 

This is true when 4 ~ ~ 6 ~  = 1, or when 
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The solution for approximate half-power frequencies then becomes 

The approximate bandwidth B is 

To a very good approximation, then, quality factor is given by 

In summary, knowledge of the Q factor allows for rapid determination of 

resonator bandwidth and loaded natural resonant frequency w L' 
When a resonant circuit or cavity is used as a load in a microwave 

circuit, several different Q factors can be defined. The first Q factor 

accounts for internal losses. It is the unloaded Q factor, QO. Next, 

the external Q factor, Qe, accounts for external losses. It is present 

because, in order to be useful, a resonator must be attached to some 

external circuit. Lastly, the loaded Q factor, QL, is the overall Q 

factor, and includes both internal and external losses. 

The unloaded Q is the Q factor due to the losses in the cavity or 

resonator itself: 

where Po is the internal power dissipation. For cavity resonators, 

power loss by conductors, dielectric fills, and radiation can contribute 

to unloaded Q. These losses can be individually accounted for by 

defining conductor quality factor Q dielectric quality factor Qd, and 
C' 

radiation quality factor Q If the conductor power loss Ts P then Qc r' C' 
is given by 
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where wo is the resonant radian frequency and W is the maximum stored 

energy. The loss tangent for a dielectric material is defined by 

tan 6 = o/(wc c ) 0 r (2.27) 

where E c is the dielectric constant, u is conductivity of the medium, r 0 
and w is radian frequency. The dielectric quality factor Qd for 

homogeneous dielectrics is 

The loss tangent is the reciprocal of Qd. The radiation quality factor 

Qr is related to the power radiated from the cavity. For a closed 

cavity with highly conducting walls, radiation is essentially non- 

existant and Q -+ a. If, on the other hand, the cavity contains an 

aperture, then it is possible for radiation to occur. In this case, 

the radiation quality factor becomes 

where P  is the radiated power. The total power loss present in the 
r 

cavity itself is the sum of these three individual internal components 

P  = P  + P  + P  O c d r  (2.30) 

Substituting this in (2.25). the unloaded Q becomes 

The more power loss, the lower the Q. The relationship between QO and 

Qc, Qd, and Qr is found by rearranging the above formula: 

One manifestation of this is that the lowest Q of the three dominates, 

and is approximately equal to QO. This is true if the other two Q's are 
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more than 10 times the smallest Q. 

In order to be useful, a cavity or resonator must deliver power to 

an external load. The power loss due to the presence of an external 

load in a cavity 

is defined by 

system results in the external quality factor Qe. It 

The stored energy W in the numerator is still the energy stored inside 

the cavity, but the power loss in the denominator is an external drain 

on the internal energy reserves. 

The loaded Q is the total Q for the system including power losses 

both internal and external to the resonator system. The loaded Q is 

Since P = P + Po, one obtains T e 

Again, the smallest quality factor 

unloaded Q, QO, are related by the 

relationship is [2] 

dominates. The loaded Q, QL, and the 

coupling coefficient n = P /Po. The 

This is useful in describing the results of measurements. 
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2.3 Lum~ed Element Resonant Circuitg 

A microwave circuit is a circuit designed for operation in the 

frequency range of 1 GHz to 100 GHz. The free-space wavelength is 30 cm 

at 1 GHz. Above 1 GHz, coaxial line, microstrip lines, or hollow 

waveguide are usually used for the construction of resonators. To give 

a compact circuit below 1 GHz, resonators are usually designed using 

discrete components, such as a series or a parallel combination of an 

inductor and a capacitor. 

A typical discrete component one port resonator is shown in Fig. 

2.1. The input admittance Y for this is 

- 
where Ro = ,/L/c. The angular resonant frequency wo is 

Fig. 2.1 Discrete component resonator 

This parallel resonant circuit's susceptance B goes to zero when w = o 
0' 

where the admittance Y = G. Under the condition of resonance notice 

that the susceptance B is zero because the inductor's susceptance is the 

negative of that due to the capacitor. The general admittance equation 

can also be written in the form: 
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For this parallel resonant circuit, the unloaded Q factor, QO, is 

It is the ratio of the magnitude of the susceptance of either L or C at 

resonance to the conductance G. For a series resonant circuit, the 

unloaded Q factor is 

Consider Fig. 2.1 with v(t) = V cos wt. Then iL = (V/wL) sin wt. 

The instantaneous electric and magnetic energies are 

2 1 2  2 
we(t) = $ " (t) = CV con wt 

At the resonant frequency w - I / J ~  , thus, 0 - 

2 w (t) = W0cos w t 0 

2 2 2 where Wo = (CV )/2 = (V /2w L) and is the maximum energy storage. 
0 

The stored energy is constant since 

w (t) + w (t) = Wo m 
(2.44) 

The instantaneous energy oscillates between the inductor and the 

capacitor. For the parallel resonant circuit in Fig. 2.1, the unloaded 

Q factor is 
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where PG is the average dissipated power in G. A graph of the 

susceptance of a parallel resonant circuit versus w  is given in Fig. 

2.2. It shows that the susceptance varies between -m at w  = 0  and m as 

w  + a. At w  = w o ,  B(w)  = 0 ,  where Y = G. 

Fig. 2.2 Susceptance of parallel resonant circuit 

To obtain Qe, the external Q factor, the parallel resonant circuit 

must be externally loaded or used as a load. For example, consider a 

transmission line with a lumped parallel resonant circuit load as shown 

in Fig. 2.3. The parallel resonant circuit is matched or critically 

Fig. 2.3 Resonant circuit with an external source 
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coupled to the line only if w = wo and % = Rc, the line's character- 

istic impedance. Figure 2.4 shows an equivalent situation. 

-i4 D 
EXTERNAL INTERNAL 

Fig. 2.4 Lumped resonant circuit 

For this circuit, the unloaded and external Q factors are 

The total or loaded Q factor is then 

The coupling coefficient n [I] for this case is 

When n = 1, the external resistor losses and the cavity losses are 

equal. The cavity is then critically coupled. For n < 1, the cavity is 
undercoupled to the external component. Otherwise, when n > 1, the 
cavity and the external component are overcoupled. The coupling 

coefficient can easily be measured. This provides a figure of merit 

indicating the quality of match. 

Many concepts of the discrete component resonator are useful at 

microwave frequencies. The difference is that at microwave frequencies 

the susceptance versus w graph contains infinitely many zeros and poles. 

These zeros and poles correspond to resonant frequencies for the 
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microwave circuit. The cases B = 0 and B + - can be interpreted as open 
circuits and short circuits, respectively. 
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2.4 Transmission Line Resonator% 

Consider a short-circuited length of lossless coaxial line or 

microstrip as illustrated in Fig. 2.5. The L and C of the line are 

Fig. 2.5 Lossless shorted line 

distributed along the length of the line and their ratio is equal to the 

characteristic impedance squared: 

where L and C are inductance and capacitance per meter along the line. 

Assuming negligible attenuation along the line, the voltage and current 

distributions along the line as a function of x are 

+ 
V(-x) = jV sin px 

v+ 
I(-x) = - cos px 

Rc 

+ 
V is the peak value of voltage. Taking Y(-e) = I(-d)/v(-e), it is easy 

to see that the input admittance Y of a lossless short-circuited 

transmission line is 

Y = cot pe (2.51) 
Rc 

As a function of t ,  this admittance can take on any value of susceptance 

from minus infinity through zero to infinity. This property is periodic 

in P every X/2 as shown in Fig. 2.6. 

To design a resonator using microstrip or coaxial line at microwave 
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Fig. 2.6 Susceptance of shorted line 

frequencies, one must choose the correct length Q such that the 

susceptance is zero or infinity. This corresponds to resonance or anti- 

resonance, respectively. The first resonance occurs when /3Q = a/2 for 

6 = X/4. A line of length X/4 gives a circuit at microwave frequencies 

that is essentially equivalent to the lumped element parallel resonant 

circuit at lower frequencies. If Q is increased to X/2, the line 

susceptance goes to plus or minus infinity and the line behaves very 

iuch like a short circuit which is the first anti-resonance. This is a 

behavior of series resonant circuits. This behavior repeats (in the 

ideal case) every X/2 meters. 

In order to compute the Q factor of the line, we must take into 

account the distributed nature of energy storage and dissipation. From 

(2.50), the instantaneous values of voltage and current along the line 

are 

+ 
v(t,-x) = V sin /3x sin wt 

+ 
i(t,-x) = cos ~x cos wt 

Rc 

The stored energies along the line in a length dx are 
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1 2 ' 2 dw (t) = - C dx v (t) = $ C V+ sin fix sin2 ut dx (2.53a) 2 

2 
1 2 

dwm(t) = 7 L dx i (t) = cos2 fix cos2 ut dx (2.53b) 2 2 
Rc 

The stored energies along the line of length !2 are 

B 2 ~~(t)='Cv+~sin~ut 2 sin Pxdx 

2 0 

w (t) = - - 
m 

cos2 ut 1 cos2 8x dx 
2 2 

Rc - e 

The maximum stored energy on the line occurs when wt = 0 so 

Two special cases are of interest. These are the resonance at P = X/4 

and the anti-resonance at P = X/2. For these resonant line lengths, 

1 +2 w = - cav 
0 4 

(2.56) 

The energy dissipation per period Wd = PdT of the line is found from 

the series resistance per unit length R and from the shunt conductance 

per unit length G. R and G account for conductor heating and insulation 

dielectric heating, respectively. The power use in a length dx due to 

these two effects are 



dpc = $ ~ d x  i 2 

dpd = $ Gdx v 2 

The average power use becomes 
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(2.57) 

(2.58) 

For Q = X/4 or Q = A/2, the second term in parenthesis vanishes. The 

average power equations become 

1 +2 P, =; GQV 

These average power dissipations have to be multiplied by the period T 

to obtain the energy use per period. 

The quality factor QO can now be found from (2.1): 

This assumes line losses R and G are small. Note that Q and Q of Sec. d 
2.2 are related to Qo by (2.32) and that Q + a. The quality factor Q 

0 
can be quite large. Notice that if R and G are zero, Q is infinite. 

0 
The propagation constant for the line is [3] 
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- 
If R << R = JL/c, GRc << 1, and the frequency is large enough, then an 
approximate formula can be obtained. This is 

For a quarter- or half-wavelength long transmission line, the Q factor 

can be written 
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2 . 5  Cavity Resonators 

An important resonator circuit at microwave frequencies is the metal 

cylindrical hollow waveguide resonator. Very high Q factors and 

accompanying narrow bandwidths can be obtained with this component. 

External circuits are coupled to the cavity through transmission line 

probes. As in the resonant transmission line case where resonance 

occurred at many frequencies, the hollow cylindrical waveguide resonator 

has many resonance frequencies and accompanying field distributions or 

modes. Electromagnetic fields cannot be sustained within a lossless 

cavity except at a resonant frequency. The field of the mode with the 

lowest or dominant resonant frequency is called the dominant mode. Such 

resonant cavities are useful for oscillator, filter, and frequency meter 

design. The input excitation provides only the amount of energy 

necessary to match the cavity losses. The cavity fields can be very 

large compared to the input because the constant stored energy 

oscillates between the electric and magnetic fields. Figure 2 . 7  shows a 

coaxial line coupled to a hollow circular cylindrical cavity and an 

equivalent circuit model in the neighborhood of one resonance which is 

valid when the coaxial line length P approaches zero. The cavity 

Fig. 2 . 7  Cavity and equivalent circuit 

contains a linear, homogeneous medium modeled by parameters p ,  c ,  and o, 

the medium's permeability, permittivity, and conductivity, respectively. 

The cavity walls are assumed to be perfectly conducting. This means 

Qo = Qd. 
To determine the equivalent circuit for the cavity of Fig. 2 . 7  at a 

resonant frequency, the internal fields must be determined. Once the 

fields have been found, the internal power dissipation, stored energies, 



MICROWAVE RESONATORS 

and energy flow out of the cavity can be found by applying their 

respective definitions. On a pointwise basis, the fields are related to 

the power and energies by the following equations [4]: 

2 
Pd = $ al~l (dissipated power density) 

w = (1/4)plH1 (average stored magnetic energy density) m 

we = (1/4)c/h/ (average stored electric energy density) 

1 ~ E x p  (power flux density) 

1 7 (v . & X B*) (volume density of power leaving a point) 

Manipulation of Maxwell's equations yields an equation for conservation 

of energy at any point inside the cavity. Maxwell's first and second 

equations are 

- v x g =  j w p H + &  i 

i 
where di and are impressed source currents. The complex power 

density leaving a point can be suitably written using the vector 

identity: 

Applying Maxwell's equations to this, one obtains 

i = -  (H* wiM + & .  J*) (2.70) 

The fields throughout a closed volume V whose surface S is the internal 

surface of the cavity-coaxial line combination (out to the point where I 

is shown) need to be accounted for in finding the total power 
i i dissipation and energy storage. Assuming sources J and M do not exist 

within V, so that the right-hand side of (2.70) is zero everywhere in V, 
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one can obtain the following equation for total complex power leaving V 

[&I : 

If the walls of the cavity-coaxial line combination are taken to be 

perfectly conducting, and since H x B* 6 = B* (6 x H) by vector 
identity, then 

The surface So is the cross-sectional surface of the coaxial line. The 

integral over S reduces to the integral over So because 6 x E is zero 
over a perfectly conducting surface. The above assumes that the 

dominant TEM mode exists in the coaxial line. The relationship between 

V and I due to the presence of the cavity becomes 

The admittance Y of the cavity-coaxial structure at the point 

illustrated in Fig. 2.7 is given by 

'Tn 

The 

the 

the 

complete fields within the resonant cavity must be determined 

admittance function Y can be found. This will be done next 
in 

case of a circular cylindrical cavity. 

(2.73) 

(2.74) 

(2.75) 

before 

for 



MICROWAVE RESONATORS 2 9 

Initially, recall that the cavity of the circular cylinder of Fig 

2.8 has perfectly conducting walls, and so QO = Qd. The internal 

Fig. 2.8 Circular cylindrical hollow cavity 

dimensions of the cavity are radius a and height L. The fields inside 

the cavity must obey Maxwell's equations for source free regions. Thus, 

Applying the curl operator and substituting the first equation in the 

second equation, one obtains 

Using the identity 

2 
V A = V ( V 0 A )  - V X V X &  

and the fact that V  E = 0, one obtains 

2 2 V E + k E = O  (2.79) 

2 where k2 = w pc - jopo. This is the Helmholtz wave equation that must 
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be solved. The real and imaginary parts of k = kr - jk are i 

For o = 0, k = k and k = 0. Maxwell's first and second equations can 
r 0 i 

be used to obtain the radial and azimuthal components from the z- 

components of the E and H fields. Specifically, if the z components are 

known, then the p and 4 components are given by (3.18). Because each 

radial and azimuthal field component can be written in terms of E and 

HZ, one usually divides field solutions into transverse magnetic (TM) 

modes, where H = 0, and transverse electric (TE) modes, where EZ = 0. 

Assuming the medium is linear and homogeneous, superposition can be 

used. Therefore, each mode can be studied separately and, under proper 

excitation, can exist separately. 

The modes can be solved for by separation of variables as shown in 

Sec. 3.3. The solution for +(TM) = EZ or +(TE) = HZ is [4] 

B (k p) is a Bessel or Hankel function of the first or second kind of 
m p  
integer order m. Depending on boundary conditions, h(m4) and h(@) are 

harmonic functions sine, cosine, e-j8 or e+j8. The characteristic 

equation is 

This equation must be satisfied in order for the scalar Helmholtz wave 

equation to have a solution; a fact that can be shown by substitution. 

The allowed values of k and B are referred to as eigenvalues and can 
P 

have only certain fixed values derived from the boundary conditions. 

The EZ and HZ fields for the TM and TE cases can be determined from 

the boundary conditions E (p=a) = E (p=a) = 0 and E (z=0) = E (z=L) = 4 P P 
E (z=0) = E (z=L)=O. For the TM case, H = 0 and 
4 4 
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satisfies the boundary conditions at p = 0 and z = 0. A and B are 

constants. By rotating a resonator with cos md behavior through 

= r/2m radians, a -sin m4 variation results. A sin md variation 

results if the guide is rotated by dl = 3rr/2m. To enforce E (p=a) = 0, 

one must choose k such that 
P 

If the zeros of the mth-order Bessel function are labeled x where n mn' 
is the zero crossing number, n = l,2,3, . . . ,  k must be chosen to have 

P 
certain discrete values 

where m = 0,1,2,3, . . .  The boundary condition on E or E4 applied at 

z = L yields the allowable values for 8. Taking the aE /az at z = L, 

one obtains 

sin pL = 0 (2.86) 

Therefore, p is required to have certain fixed values: 

where p = O,l,2,3, . . .  The final result for the TM electric field is 

$(TM ) = Jrn(+](A cos m4 + B sin m4) cos 
mnP [ y z ]  (2.88) 

2 Since k + 82 = k2, one easily obtains the resonant frequency. If a = 0 
P 

and k2 = w2pc, it is 

One sees that the resonant frequency is dependent on m, n, and p, and 

the dimensions a and L of the resonator only. The significance of this 
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is that in the ideal case Maxwell's equations do not have a solution in 

the cavity except when f = fr. At this frequency, the solution is given 

by $(TMmnp) . 
The boundary conditions applied to the TE case yield 

HZ = $(TE ) = Jm(kpp)(A cos md + B sin md) sin Bz (2.90) 
mnP 

where A and B are constants. To enforce E (p=a) = 0, one must choose 0 

J;(k a) = 0 (2.91) 
P 

If the zeros of the derivative of the mth-order Bessel function are 

labeled xAn, where n is the zero crossing number such that 

for n = l,2,3, . . . ,  k must be chosen to have certain discrete values: 
P 

The boundary condition on E or E applied at z = L results in the 
P d 

allowable values for ,9 in the TE case. They are 

where p = l,2,3, . . .  as before. The resulting TE longitudinal field 

component is 

x' mn 
p (A cos o( + B sin m& sin[? r ]  (2.95) Hz = m E m p )  = Jm[-y ] 

The characteristic equation is used to find the resonant frequency. For 
2 

a = 0 and k2 = o p c ,  the resonant frequency is 

The TE mode solutions to Maxwell's equations appear when f = f (TE ) .  r mnp 
The zeros x and x'  can be determined from Tables 4 . 3  and 4 . 4 .  mn mn 
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The smallest roots xO1 and xil generate the dominant mode depending on 

the value of L/a. The ratio of f (TMOlO) to f (TElll) is 

When f (TMOIO)/fr(TE1ll) < 1, the TMOIO mode is dominant. Solving for 

L/a under this condition, one obtains 

for TMOIO dominant. If L/a > 2.03, the TElll mode is dominant instead. 
For instructive purposes, it will be beneficial to examine three 

modes in detail. First, if the cylinder is short and L < 2a, then the 
TnOIO mode appears first, or is dominant. From (2.83) and (3.18), the 

field components for the TMOIO mode are 

where E is a constant. All other components are zero. The fields with 0 
time variation are 

The z-component of E field oscillates with cos wt and the peak value is 

in the center at p = 0, gradually decreasing to zero at p = a. The H 

field, on the other hand, is in the 4 direction and oscillates with 
sin wt. The peak value is at p = a, while the minimum is at p = 0. 

This behavior is shown in Fig. 2.9. This mode is similar to the 

dielectric resonator's TMOlb mode. The double arrows indicate fields 

from 0 dB to -3 dB. The long lines indicate fields from -3 dB to -6 dB 

and the short lines represent fields from -6 dB to -20 dB. Fields below 

-20 dB are not drawn. 
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Fig. 2.9a Electric field of the TMolo mode 

Fig. 2.9b Magnetic field of the TMolo mode 
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The fields shown in Fig. 2.9 occur for maximum energy storage in the 

electric field (Fig. 2.9a) and magnetic field (Fig. 2.9b). To show 

this, the pointwise stored electric energy is given by 

2 1 2 
we(p, t) = (1/2) c Ez = 5 c 8: J:(xOlp/a) cos wt (2.102) 

To find the total energy storage, the volume integral of w ( p , t )  over 

the volume of the resonator must be performed. The total stored 

electric energy is 

w (t) = w dv = nLc E 0 cos wt j p J ;  [y]dp 

cavity 0 

where the integral was evaluated using the Appendix 2.A. The time- 

average stored electric energy is 

This can also be obtained by integrating the phasor field squared 

(e/4) (hi2 over the cavity. 
The pointwise stored magnetic energy is given by [4] 

The total stored magnetic energy is obtained by integrating this over 

the cavity: 

2 

w (t) = 
m 

dv = - [+] B: sin2 wt f p J: [ ~ p J d p  I m 2 
cavity W IJ 0 

The time-average magnetic energy then becomes 
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This can also be obtained from the phasor field by integrating (I~/~)IHI 2 

over the volume of the cavity. 

The total stored energy for the TMOIO mode is 

erL [ k]2sin2wt] (2.108) W(t) = Wm(t) + We(t) = 2 Eo J1(xO1) a cos wt + 

2 Since = 0 for this mode, k = (x01/a)2, and one obtains 

Under the condition of resonance, the total energy is constant as a 

function of time. The energy alternates between being stored in the 

electric and the magnetic field. In the phasor approach, the average 

values of W,(t) and We(t) are equal. Therefore, 

The total stored energy in the cavity is twice the average value: 

This is the same result as obtained before. The fact that Wm = We 
results in a zero input susceptance. From (2.75), one obtains 

at resonance. Therefore, the input admittance is real at resonance. 

See Sec. 2.8 for further discussion. 

If the cylinder is tall and L > 2a, then the TElll mode is dominant. 
From (2.95) and (3.18) the field components of this mode are 

HZ = Ho J1(~;lp/a)cos~ sin ' 
L Z  (2.113b) 
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ra H = -  H J I (xl p/a)cosd cos ' 
p xilL 0 1 11 L Z  

b 4  
2 

Ep = Ho ($1 Jl(xilp/a)sin( sin ' L z 

Ed = jup Ho ;; Ji(xilp/a)cosd sin z [ ;J 
The Bessel function of order one, Jl(xilp/a) is zero at p = 0 and 

reaches 0.58 at p = a. The derivative Jll(xilp/a) is 0.5 at p = 0 and 

decreases to zero at p = a. It can be written as 

Ji (XI 11 p/a) = $ (JO(xilp/a) - J2(xi1p/a) 1 (2.114) 

The field distributions can be simplified by using 

Defining CH = Ho (ra/2x1 L) cos (rz/L), the transverse-to-z field 
11 t 

becomes 

H = CH cosd[J (x' p/a) - J (x' p/a) ] a  -t 0 11 2 11 

The magnitude of this function can be written as 

The H field is strongest at p = 0 and generally decreases with 

increasing p. It is symmetrical about both the d = 0 and d = r/2 axes. 

Figure 2.10 shows the transverse H field Ht and Fig. 2.11 shows the 
field in an azimuthal plane d = 0,r. 

At resonance, the stored energy alternates between the H field and 

the E field. The E field has only a transverse-to-z component. 
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Fig. 2.10 Transverse magnetic field of the mode TElll 

Fig. 2.11 Magnetic field in the meridian plane, mode TElll 
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Defining CE = j w p  Ho (a/2xi1) sin (nz/L), it can be written as 

Note that Et yt = 0. The transverse E and H field vectors are normal 

to one another. The magnitude of the electric field has the same p 

behavior as that of the magnetic field. Their ratio is 

Figure 2.12 presents an illustration of the transverse electric field. 

Fig. 2.12 Transverse electric field, mode TElll 

The average stored electric energy is 
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2 we=:J E d v  

cavity 

a 2n 

J 2 2 
[(JO + J2)-2 J0J2cos2fl pdpd) sin2 : z dz 

p=O d=O 
i o 

Performing the integration with respect to 4 and z, one obtains 

The integrals in (2.121) are given in Appendix 2.A. The final result 

for the average stored electric energy is 

This same result is also obtained for Wm, as expected. If desired, 

this equation can be simplified by using the fact that 

The final cavity mode to be considered is the TEOll. This mode is 

included because of its relationship with the dielectric resonator's 

TEOl6 mode. For the TEOll mode, E = E = H = 0. The other components 
Z P 4  

are 

H = H J (xl p/a) sin : z z 0 0 0 1  

rra - rr 
Hp = Ho Ji)(~i)~p/a) cos ; 

E = jop H Ji) (xblp/a) sin z 
d O Xol 
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The most obvious feature of this mode is its +-independence. The radial 

variation of E varies from zero at p = 0 and p = a to a maximum + 
at p/a = xil/xbl, or p = a/2.08. The p component of H, H has the same 

P' 
radial variation. The radial variation of H varies between one and 

-0.4. In a transverse plane, H is directed and is p-directed. t t 
The TEOll mode is shown in Fig. 2.13. The average stored electric 

energy is computed as for the previous cases. The result is 

It can be shown that increased energy storage results if either a or L 

is increased. 

Fig. 2.13Ca) TEoll mode, magnetic field in the equatorial plane 
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Fig. 2.13(b) TEoll mode, electric field in the equatorial plane 

Fig. 2.13(c) TEoll mode, magnetic field in the meridian plane 
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2 . 6  Conductor and Dielectric Losses 14.51 

The conductor and dielectric losses P and Pd, respectively, are 

needed to find the conductor quality factor, Qc, and dielectric quality 

factor, Qd. For conductors the constitutive parameters are o ,  s ,  and p .  

In dielectrics, they can be either s and p (complex s ) ,  or o ( w ) ,  s ,  and 

p .  In the first case, o  is taken to be zero, but s is taken to be 

complex : 

This makes 

The second term is equivalent to a dielectric loss. In the second case, 

the constitutive parameters are o ,  E ,  and p .  In this case, a  is allowed 

to be a function of frequency o ( w ) .  The two cases have the same 

properties if o ( w )  = ws". For purposes of our discussion here, the 

constitutive parameters for either a conductor or a dielectric will be 

taken to be o ,  c ,  and p ,  which are all real, but possibly functions of 

frequency. 

The field behavior and power dissipation at an air-metal interface 

is needed in order to determine the conductor losses in a cavity. The 

skin depth 6 = J Z / ( w p o ) ,  the depth at which fields have decayed to 37 % 

of their surface values, is very small at microwave frequencies. 

Therefore, conductor loss, PC, can be determined approximately using an 

equivalent surface impedance, Zs, and surface resistivity, Rs. Assuming 

that o  >> we in ( 2 . 8 0 ) ,  V E = 0, and J = oE, the solution to Maxwell's 

equations at a dielectric-conductor boundary at x = 0  becomes 

where 6 = J2/ (wpo)  is the skin depth. The equivalent surface current is 

obtained by integrating the volume current from zero to infinity in x: 

The surface impedance becomes 
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Then, Etan = ZsJs, where J is the surface current density. The surface 

resistivity is the real part of this, or 

The power loss in conducting cavity walls can be approximated by 

Here, J and I! are the current and field, respectively, for perfectly -s 
conducting walls. This approximation is valid for good conductors at 

microwave frequencies. 

It is of interest to apply this approximation to find the conductor 

quality factor Q for the TEOll mode of the cylindrical cavity. The 

currents are given by J = fi x H, where fi is the normal to the metal and -s 
H is evaluated at the boundary. The currents for the top, side, and - 
bottom of the cavity are, respectively, 

Jss = Ho JO(xb1) sin z 8 (2.133b) 

Note that J - 
-sb - Jst' The total top and bottom power dissipation is 

The integral in (2.134) is 
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The side power dissipation is given by 

The total conductor power dissipation in the cavity becomes 

Using the previous result for We, the conductor quality factor Qc 

becomes 

- 
where q = Jp/a and Rs = J(op/2u). 

For a cavity field with a homogeneous dielectric, the dielectric 

quality factor Qd is given by 

It is the reciprocal of the loss tangent, tan 6, for the material. Note 

that 6 is not the skin depth here, but is 

-1 e 
6 = tan we 

(2.139) 

For inhomogeneously filled cavities, one should use electric filling 

factors, as explained later in Ch. 7. 
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2.7 Incremental Rules 

Incremental rules allow for the calculation of conductor quality 

factor, Qc, for certain special cases. Using incremental rules, the 

calculation of wall currents is avoided. The incremental inductance 

rule of Wheeler [6,7] is valid for determining the Qc and the 

attenuation constant a of TEM transmission lines. It is also useful for 

microstrip lines as shown by Pucel, et al. ( 8 1 .  The Q and a are 

calculated from values of characteristic impedance Rc and R'. Rc is the 

characteristic impedance of the transmission line made of perfect 

conductors. RL is the characteristic impedance of the same line with 

all of its conducting walls receded by 6/2 ,  where 6 = J(2/wpu) is the 

skin depth. The Q factor due to conductor losses in the transmission 

line is then obtained from 

The term "incremental inductance rule" originated from the fact that 

under appropriate assumptions the incremental inductance AL is 

proportional to the change in the stored magnetic energy within the 

conductor, which, in turn, is proportional to the dissipated power 

within the conductor [7]. 

The attenuation constant a of the transmission line can be obtained 

from Qc by using (2.66) as follows: 

where is the phase constant of the transmission line, evaluated under 

the assumption that the conductors are perfect. 

An incremental rule has also been derived for general hollow 

waveguides of arbitrary cross section. The rule [ 9 ]  allows for the 

computation of the attenuation constant, a, by computing a change in the 

propagation constant, /3, when the metal walls of the waveguide are moved 

a small distance. 

The incremental frequency rule of Kajfez [lo] applies to 

rotationally symmetric modes. For the circular cylindrical cavity 

studied previously, it applies to the TE modes only. Another 
O ~ P  

condition used during the derivation is that the local radius of 
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curvature must be much larger than 6, the skin depth. To apply this 

rule, the resonant frequency fo of the resonant structure with perfectly 

conducting walls is computed. Then the walls are moved into the cavity 

by a full skin depth 6. The resulting change in resonant frequency 

Af (6) due to this perturbation of cavity size is computed. The 0 
conductor quality factor Qc is then determined from 

In Sec. 4.9, this rule is applied to a dielectric resonator on a 

microstrip substrate. The degradation of Q due to the presence of the 

conductor is examined. 

An alternative way of applying the incremental frequency rule is 

through the use of differentials. For example, consider the circular 

cylindrical resonator's TEOll mode shown in Fig. 2.13. Its resonant 

frequency is given by 

The differential of fo, due to an inward movement of the cavity walls 

by one skin depth 

From (2.143), one 

6, is computed 

Afo(6) = 

obtains 

as follows: 

Using this value, one obtains exactly the same formula (2.137) for Qc as 

was obtained previously (for p = 1): 



DIELECTRIC RESONATORS 

These techniques are useful for computing Q for enclosed dielectric 

resonators. 
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2.8 Circuit Modeline of Resonators 

For a resonator to have predictable performance in a circuit, it 

must have an accurate model. For example, consider a coaxial feed 

terminated in a loop inside a cavity as shown in Fig. 2.14. The 

direction normal to the plane of the loop is shown in the 4-direction, 

but it could be chosen to be in any direction. The TMOIO mode would be 

easily excited by the loop placement shown, since the H field is in the 

+direction. The orientation of the plane of the loop can be changed to 

excite other modes. 

, RESONATOR 

Fig. 2.14 Coaxial feed terminated in a loop 

The voltage at the loop input to the resonator is found by applying 

Maxwell's equation: 

where S is the surface of the loop and P is the boundary of S. If one 

assumes the magnetic field Ho threading the loop is the same as if the 

loop were not present, then the right-hand side is equal to j w p  HOA, 

where A is the area of S. Since the tangential E field on the surface 

of the loop wire is zero, the line integral reduces to the integral 

between the inner and outer conductors of the coaxial line. This is the 

voltage V at that point 

The input admittance is 

on the line. Therefore, 

V = j w p  H A 
0 

(2.148) 

found from (2.75). Thus, for a = 0, we have 
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For the TMOIO mode, 

The value of Ho is given by (2.100), evaluated for p = a: 

Therefore, from (2.149), one obtains 

where 

Therefore, including the a # 0, case, one finds that the resonator can 
be modeled by the parallel lumped element resonant circuit as shown in 

Fig. 2.7. The reference plane for this is the inside wall of the 

resonator. If a quarter wavelength of line of characteristic impedance 

R is attached, the input impedance is given by the quarter-wave 

transformer equation: 



MICROWAVE RESONATORS 

Since Z is the impedance of a parallel resonant circuit, 
L 

The input impedance is 

2 This is a series resonant circuit with elements Rs = R:G~, Ls = R C 
c P' 

C = L B:. Therefore, the particular model chosen depends on the 
s P 
reference plane for the transmission line. 

Another configuration that converts a parallel resonator into a 

series resonator is the linear transformer. The input of the linear 

transformer of Fig. 2.15 can be shown to be 

where 

If Z is a series resonant circuit, the equivalent is a parallel L 
i 

resonant circuit. 

Fig. 2.15 Equivalent circuit using a linear transformer 

The equivalent circuit of a cavity resonator at the cavity wall 
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reference plane can be drawn (11 as shown in Fig. 2.16(a). One parallel 

resonant circuit is present for each resonator mode. The circuit of 

Fig. 2.16(b) is equivalent according to the previous discussion. 

Foster's reactance theorem [5] is also useful for analyzing resonators. 

Fig. 2.16 Equivalent circuits for cavity with multiple resonant modes 
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2.9 Q Measurement Techniaues 

Techniques for Q measurement are either frequency domain or time 

domain methods. Three frequency domain methods are useful in Q 

measurement. These are the reflection method, the reaction method and 

the transmission method. Figure 2.17 shows block diagrams for each of 

these three methods. 

The network analyzer [ll] displays the magnitude and phase of 

reflection coefficient Sll or transmission coefficient S21. The 

reflection coefficient can be conveniently displayed in polar 

coordinates on the network analyzer. A Smith chart overlay for the 

polar reflection coefficient display allows for the impedance to be read 

directly. Swept-frequency or point-by-point measurements can be 

performed and displayed with the network analyzer. 

METAL ENCLOSURE 7 

TO NETWORK A 
ANALYZER 

f-- 

DIELECTRIC A 
RESONATOR 

, 
Fig. 2.17(a) Reflection method of Q measurement 

Fig. 2.17(b) Transmission method of Q measurement 
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METAL ENCLOSURE 

Fig. 2.17(c) Reaction method of Q measurement 

Fig. 2.18 Equivalent circuit for the reflection method of Q measurement 

Figure 2.18 is a lumped-element equivalent circuit of the reflection 

type of measurement from Fig. 2.17(a). The input impedance is given by 

L is the inductance of the coupling loop at the end of the coaxial line 1 
(see Fig. 2.14). For simplicity of further discussion, the reactance 

wL1 will be neglected. The term 
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is the induced input resistance, and in the narrow frequency band around 

the resonant frequency w o ,  the value of R. shows little change with 

frequency. It is further convenient to simplify the frequency 

dependence using (2.17), thus, 

where Aw = o - wo.  The simplified expression for the input impedance 

becomes 

The corresponding input reflection coefficient is 

When the resonator is detuned, we may choose Aw + m ,  so that Zi + 0, and 

the input reflection coefficient becomes ri = r = -1. At frequencies D 
close to the resonant frequency o o ,  the input reflection coefficient 

describes a circle, as shown in Fig. 2.19. The complex number r 
i - r~ 

is given by an expression which is easy to interpret: 

The ratio of the input resistance Ri to the characteristic impedance R 

is defined to be the coupling coefficient n: 
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Fig. 2.19 Reflection coefficient versus w 

The loaded coupling coefficient is defined as in (2.36) and repeated 

below: 

From (2.163), we obtain 

At resonance, Au = 0 and the circle r - I' intersects the real 
i D 

axis. From (2.166), it follows that the diameter of the circle is 

2n d = l r i - r 1  =-  D max 1 + n (2.167) 

Therefore, if we measure the diameter of the circle on the polar display 

of the network analyzer, we may compute the coupling coefficient with 

the aid of (2.167), to be 
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If one observes the angle QL in Fig. 2.19 as a function of 

frequency, one may determine the value of the loaded Q factor. Namely, 

from (2.166), it follows that 

Aw 
tan QL = - QL 2 - 

Wo 

To measure QL, one selects two frequencies, denoted by f3 and f4, where 

QL = -45', and +45" respectively. This gives 

The unloaded Q can now be found from (2.165): 

The above expressions can be combined to find Qo directly. The result 

is 

- tan Q L 
Q0 = (2 - d) 2Aw/w0 

To find QO, one must have tan dL = 1 - d/2. This is a circle of radius 
- 
J2 passing through rD and -rD. Figure 2.20 gives a template for 

overlaying on the reflection coefficient polar display. The straight 

lines correspond to Q = 45" and QL = 26.6" for Q measurement. The L - L 
arcs are circles of radius J2 for QO measurement, and the scale from .1 

to 10 gives the coupling coefficient n.  

This procedure is illustrated for an inductance-coupled dielectric 

resonator [12]. The frequencies for QL = f 45", measured with the 

microwave counter, were f3 = 7.1730 GHz, f4 = 7.1439 GHz, and fo = 

7.1575 GHz. The measured diameter is d = 1.45 from which the coupling 

coefficient is computed to be n = 2.64. Thus, from (2.170), QL = 246; 

and, from (2.171), QO = 895. 

Because of the finite value of the inductance L1 in Fig. 2.18, the 

measured circle on the polar display of the network analyzer is not 

centered on the real axis, but rather above the real axis, as shown in 

Fig. 2.21. The loaded resonant frequency fL is also slightly different 
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from the unloaded resonant frequency fo, as pointed out in [13]. When 

the coupling to the input transmission line is achieved by a capacitive 

probe, the circle appears below the real axis of the Smith chart [7]. 

Fig. 2.20 Overlay for Q measurement (reference [12], 01984 IEEE) 

Fig. 2.21 Input reflection coefficient for inductively 
coupled resonator 

Figure 2.17b shows the set-up for a transmission measurement of QL. 

The loaded and unloaded Q's are related by 
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where cl and n2 are the coupling coefficients for ports one and two, 

respectively. Figure 2.22 shows a typical transmission curve. The 

loaded Q is 

0 1 
I 

fo 
FREQUENCY --t 

Fig. 2.22 Transmission curve 

When the magnitudes of nl and n2 are estimated by a separate 

experiment, the transmission method yields approximately the same 

accuracy for unloaded Q as does the reflection method. Error analysis 

[14] shows that by using a microwave counter for the frequency measure- 

ment, the main source of error is in the amplitude resolution of the 

network analyzer. Assuming the amplitude resolution to be f 0.1 dB, the 

accuracy of the measurement of QO is estimated to be f 1.5 8 .  

Figure 2.17(c) illustrates a reaction type of measurement of the Q 

factor, such as described by Podcameni, et al. [15]. The dielectric 

resonator is placed next to the microstrip line. The coaxial port at 



60 DIELECTRIC RESONATORS 

the left-hand side in the figure is used for measurement of the 

reflection coefficient with the network analyzer, and the coaxial port 

on the right-hand side is terminated in a matched resistance. 

For the reaction type of measurement, the loaded and unloaded Q's 

are related by 

The polar display of Sll in the reaction-type measurement is shown 

in Fig. 10.3. The circles are very similar to the reflection-type 

measurement circles in Fig. 2.19, except that they are one-half the 

size. It is also possible to measure the transmission coefficient S 12 
and determine the Q factor from the observed magnitude of S12. The 

details of the measurement procedure can be found in [16] and [17]. 

Error analysis of the reaction measurement of the Q factor has not 

been published, but it is believed to be inferior to either the 

reflection or the transmission method. On the other hand, the method is 

very convenient for those resonators which will eventually be mounted on 

a microstrip structure because the measurement is performed in an actual 

working environment. 

The final technique to be mentioned here for measurement of Q is the 

time domain method [2]. From ( 2 . 8 ) ,  the stored energy in a cavity 

exhibits a decay of the form 

The time constant is r = Q/wO. This time constant is measured to 

determine Q, thus, 



UICROWAVE RESONATORS 

Appendix 2.A INTEGRALS OF BESSEL FUNCTIONS 

Two integrals required to evaluate (2.103) and (2.106) are 

where xOn is a zero of J (x) such that J (x ) = 0. These are special 
0 0 On 

cases of (4.41) and (4.42). For higher-order Bessel functions, the 

integral to be utilized is 

Substituting m = 0 and k p  = xil/a, one obtains (4.41) and for m = 2, 

and after some manipulation, one derives: 
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Chapter 3 
DIELECTRIC ROD WAVEGUIDES 

Hesham A. Auda a n d  Darko Kalfez 

3.1 Introduction 

This chapter is concerned with the field analysis of the dielectric 

rod waveguide shown in Fig. 3.1. Such a structure has found its 

applications in the areas of dielectric rod antennas and optical fiber 

Fig. 3.1 The dielectric rod waveguide 

waveguides, to name a few. The analysis is later specialized to the 

parallel-plate dielectric resonator shown in Fig. 3.2. The use of the 

resonator in measuring dielectric constants is also discussed. 

A familiarity with electromagnetic waves in dielectric rod 

waveguides is very helpful in understanding the operation of dielectric 

resonators. Just as a truncated hollow waveguide becomes a resonant 

cavity, so the dielectric rod waveguide when truncated becomes a 

dielectric resonator. 

The topics considered are classical electromagnetic field problems. 

Many of the concepts and formulas established in this chapter form a 

basis for some of the simple as well as rigorous models of dielectric 

resonators discussed in later chapters. The presentation here is, 

therefore, rather detailed. In the first two sections, the basic 
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Fig. 3.2 The parallel-plate dielectric resonator 

electromagnetic equations used and the method of separation of variables 

for solving the scalar Helmholtz equation in cylindrical coordinates are 

introduced. A field analysis then shows that the dielectric rod 

waveguide, for any given frequency and rod material and radius, is 

capable of supporting different field configurations, called the modes 

of the rod, at certain discrete values called the characteristic values, 

or eigenvalues, of the rod. An equation whose zeros are the eigenvalues 

is derived and solved numerically. Diagrams for the eigenvalues and 

field pattern plots of the modes are given. The use of the eigenvalue 

diagram for computing different mode wavelengths is illustrated. The 

classification of the modes of the rod, in terms of their field 

configurations and different power ratios, is also discussed. The 

parallel-plate dielectric resonator is then considered. A graphical 

method for determining the resonant frequencies of such a resonator is 

presented and used to compute the resonant frequencies for some 

resonators. Finally, the Courtney method for measuring dielectric 

constants is discussed. 
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3.2 Basic Eauationk 

This section deals with the basic time-harmonic electromagnetic 

field equations in a linear, homogeneous, and isotropic medium. These 

equations are presented to the extent that they are used. For a more 

detailed discussion of the equations and their origin, reference should 

be made to one of the many texts on electromagnetic theory, for 

instance, the texts by Johnk [I] and Cheng [ 2 ] .  

The electric and magnetic fields satisfy Maxwell's two curl 

equations: 

together with Gauss's law: 

The phasors $, H, and J in (3.1), (3.2), and (3.3) are, respectively, 

the electric field, magnetic field, and current density vectors. The 

constant scalars c and p are the permittivity and permeability of the 

medium, respectively, while q is the charge density. Taking the 

divergence of (3.1), and using (3.3). there results the continuity 

equation: 

Similarly, taking the divergence of (3.2), the magnetic field is readily 

seen to be solenoid, thus, 

At source points, J denotes impressed sources. In the case of a 

lossy medium with a non-vanishing conductivity o, J accounts for the 

conduction current generated by the electric field according to Ohm's 

law: 

At source-free regions, (3.1) and (3.3), with the help of (3.4) and 

(3.6), can be rewritten as 
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where E - 8.854 x 10-l2 Farad/m is the permittivity of free space, and 0 
E is the relative permittivity or relative dielectric constant of the 

medium. The loss-free case can then be recovered by setting o = 0 in 

(3.9). 

The main concern of this chapter is the solution of the set of 

equations (3.2), (3.5), (3.7), and (3.8), collectively referred to as 

Maxwell's equations, for g and 8. However, rather than solving the 

coupled set of equations, both E and are indpendently solved. Taking 

the curl of (3.2), then using (3.7), we have 

where 

is the wave number of the medium and X is its wavelength. Similarly, 

taking the curl of (3.7), then using (3.2), we have 

The duo (3.10) and (3.12) are usually called the vector Helmholtz, or 

wave, equations. Furthermore, using the identity: 

for any vector field A, together with (3.5) and (3.8), (3.10) and (3.12) 

become 
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Equations (3.14) and (3.15) can each be resolved into three scalar 

Helmholtz, or wave, equations. Two more scalar equations are obtained 

from (3.8) and (3.5). A total of eight scalar partial differential 

equations are, therefore, involved in the solution of electromagnetic 

field problems. 

The amount of difficulty can be greatly reduced by realizing that 

only two field components directed along a constant direction are needed 

to derive all other components. This is shown below, arbitrarily 

chosing EZ and H as the generating fields. In anticipation of the 

applications to follow, the cylindrical coordinate system shown in Fig. 

3.3 is used. 

Fig 3.3 

Expanding (3.2) an 

The cylindrical coordinate system 

d (3.7) in cylindrical coordinates, we have 

and 
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respectively. Substituting (3.17b) for Ed into (3.16a), it becomes 

Similarly, substituting (3.16a) for H into (3.17b), we have 
P 

Expressions for E and H in terms of EZ and H can be similary 
P 0 

obtained, yielding 

As affirmed, all the transverse field components can be obtained once EZ 

and H are determined. The longitudinal field components themselves 

satisfy 

In an inhomogeneous medium of regions with different permittivities, 

(3.18), (3.19), and (3.20) are satisfied within each region, evidently 

with different medium parameters and wave numbers. Across the 

boundaries, the tangential field components on the opposite sides are 

continuous, a consequence of Maxwell's equations. Furthermore, in any 

unbounded region, the Sommerfeld condition: 
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uniformly for all directions e ,  must be satisfied. There is, at most, 

one complex valued function which assumes given values on the 

boundaries, and satisfies (3.19), or (3.20), within each region, as well 

as the Sommerfeld condition (3.21) for the infinite region 131.  

There remains the problem of solving (3.19) and (3.20), 

respectively, for EZ and HZ. This is readily accomplished using the 

method of separation of variables. 
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3.3 Solution of the Wave Eauation in Cylindrical Coordinates 

In this section, the method of separation of variables is used to 

obtain solutions for the wave equation in the cylindrical coordinate 

system. The wave equation (3.19) , or (3.20), with the Laplacian vL 
expressed in cylindrical coordinates, is given by 

where $ stands for either longitudinal field component. 

In essence, the method of separation of variables seeks a solution 

of (3.22) of the form 

Substituting (3.23) into (3.22), then dividing by $, it becomes 

The third term is explicitly independent of p and 6. It is also 

necessarily independent of z, if (3.24) is to sum to zero for all 

(p,d,z). Thus, 

where p is a constant. 
multiplying throughout 

Substituting (3.25) into (3.24), then 
2 by p , it becomes 

However, the second term in (3.26) 

rest of the equation is a function 

then, 

is a function of 4 only, whereas the 
of p only. By the same argument, 
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where m is a constant. Substituting ( 3 . 2 7 )  into ( 3 . 2 6 ) ,  then 

multiplying throughout by P, there results 

where 

By ( 3 . 2 8 ) ,  the wave equation is separated into three equations, each 

of which determines only one of the functions P, F, or 2. The first two 

equations, ( 3 . 2 5 )  and ( 3 . 2 7 ) ,  are harmonic equations, whose solutions 

are harmonic functions. The last equation ( 3 . 2 8 )  is a Bessel equation 

of the mth order, whose solutions are Bessel functions. The choice of 

the constants @ and m, as well as the solutions for ( 3 . 2 5 ) ,  ( 3 . 2 7 ) ,  and 

( 3 . 2 8 ) ,  depends on the physical geometry for the structure considered, 

the conditions at the boundaries, and the type of field to be supported 

by the structure. Equation ( 3 . 2 9 )  is an important relationship between 

the radial wave number k the medium wave number k, and the waveguide 
P '  

propagation constant 8 .  In guided wave propagation, k can take only on 
P 

certain discrete values, each of them corresponding to a different mode 

of propagation. In the next section, the dielectric rod is seen capable 

of supporting different fields -- the so-called modes of the rod. 
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3.4 The Eieenvalue Eauation 

Consider the dielectric rod waveguide shown in Fig. 3.1. The rod 

material is assumed to be a perfect dielectric characterized by the real 

scalar permittivity s = sOsr and the real scalar permeability p 0' 
Inside the rod, EZ and HZ are finite at the origin, and are periodic 

with a period of 2x with respect to 4 .  Furthermore, they are to 

represent waves traveling in the positive z-direction. These 

requirements are met by chosing EZ and HZ in the form: 

where m is an integer, 
'm 

mth order, and 

is the Bessel function of the first kind and 

- 
In (3.32), k = ko Jc is the wave number of the dielectric, where k is 0 
the wave number of free space. Outside the rod, E and H are similarly 

periodic with a period of 2% with respect to d ,  and represent traveling 
waves along the z-axis. However, unlike the components inside, they are 

to be exponentially decaying in the p direction, if the rod is to be a 

waveguide. Thus, 

where K is the modified Bessel function of the second kind and mth m 
order, and 
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Note that ko and p have been swaped in (3.35), so that the argument of 
K is real. m 

The field components, whether inside or outside the rod, are 

expressed as the product of factors, each of which satisfies only one of 

the equations (3.25), (3.27), or (3.28), as well as the requirements 

imposed by the physical geometry, the analyticity of the field at the 

origin, or the utilization of the rod as a waveguide transmitting energy 

in the z direction. Furthermore, since EZ and HZ must be linearly 

independent over 0 6 4 < 2n, E and H are chosen to vary as cosine and 

sine functions, respectively. For m = 0, the fields are split into 

transverse electric to z (TE to z) and transverse magnetic to z (TM to 

z )  fields with no #-variation, completely independent of each other. 

For all m > 0, the fields are hybrid, or HEM, having both TE and TM 
parts. 

Substituting (3.30) through (3.35) into (3.18), the transverse field 

components inside the rod are found to be 

whereas those outside the rod are given by 



DIELECTRIC RESONATORS 

In ( 3 . 3 6 )  and ( 3 . 3 7 ) ,  primes denote differentiation with respect to the 

argument of the function. 

The particular choice of solution in the p-direction outside the rod 

has automatically satisfied the Sommerfeld condition. The continuity of 

the tangential field components across the surface of the rod, however, 

requires that 

at p = a. Substituting ( 3 . 3 6 )  and ( 3 . 3 7 )  into ( 3 . 3 8 ) ,  we obtain the 

boundary conditions: 
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These equations can be simplified by introducing the new variables: 

x = k  a 
P 1 

(3 .4O) 

and 

Hence, 

The equations (3.39) then become 

A Jm(x) - C Km(y) = 0 

B Jm(x) - D Km(y) = 0 

In matrix form, (3.43) becomes 

where F is the 4 X 4 matrix: - 
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and ID is the 4 x 1 column vector of the amplitudes A, B, C, and D: 

A non-trivial solution of (3.44) exists only at those x's for which 

where det(-) denotes the determinant of the matrix. Expanding the 

determinant of F in terms of the elements of the first column, (3.47) - 
becomes 

2 2 2  Dividing throughout (3.48) by (K (y)/w poea ) and regrouping, (3.48) can 
m 

then be put in the form [ 6 ] :  
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where 

The solution of (3.49) determines the x's for which a non-trivial 

solution of (3.44) exists. Equation (3.49) is called the eigenvalue 

equation for the dielectric rod waveguide, the zeros x of which are 

called the eigenvalues of the dielectric rod waveguide. 

In (3.41), x should not exceed a certain value xmax given by 

x max = k o a J e r - 1  

because y then becomes purely imaginary, thereby changing the modified 

Bessel functions K into Hankel functions H(~) representing outwardly m m 
traveling waves. There are, therefore, only a finite number of 

eigenvalues for any specified m. Another subscript n is, therefore, 

needed to enumerate the eigenvalues. It then becomes convenient to 

denote the eigenvalues by x The fields (%n,sn) corresponding to mn' 
x are called the modes of the dielectric rod waveguide. For m = 0, F mn 3 
vanishes identically, and (3.49) splits into the two equations: 

and 

corresponding, 

established by 

respectively, to TM and TE fields. This can be readily 

noting that, for m = 0, F transforms into a block - 
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diagonal matrix with one block corresponding to TE fields and the other 

to TM fields . 
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3.5 The Modes of the Rod 

The eigenvalues for the hybrid modes, as well as for TM and TE 

modes, can be determined by solving the transcendental equation (3.49). 

The evaluation of the eigenvalues has to be carried out numerically. 

This can be accomplished by first locating the zeros of the equation 

within small intervals, then employing a suitable iterative procedure 

for the solution of nonlinear equations for actually determining these 

zeros to the accuracy desired. The localization can be done by 

increasing x gradually and noting the changes of sign of the equation. 

The forms of F1, F2, and F are, therefore, particularly helpful, since 3 
none of them is singular over the range of x .  The first few eigenvalues 

so computed are plotted versus k a in Figs. 3.4 and 3.5 for ar = 20.0 0 
and er = 38.0, respectively. 

Fig. 3.4 The first 13 eigenvalues of the dielectric rod waveguide 
(" = 20.0) 
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koa 
Fig. 3.5 The first 13 eigenvalues of the dielectric rod waveguide 

(rr = 38.0) 

The diagrams of Figs. 3.4 and 3.5 (called eigenvalue diagrams) 

describe the change of eigenvalues as functions of the normalized 

frequency koa in a way first used by Snyder [ 4 ] .  Some remarks can be 

drawn from these two figures. The eigenvalues clearly vary with 

frequency. This is in contrast to those of the metallic cylindrical 

waveguide filled with the uniform dielectric material. In the latter 

case, the eigenvalues are independent of frequency [5, sec. 5-21, and 

would therefore appear as horizontal lines on the eigenvalue diagram. 

Furthermore, the eigenvalues are generally slowly varying functions of 

k a, and can therefore be fitted by simple polynomials. For instance, 
0 
the eigenvalue of the TEOl mode for r = 38.0 can be approximated by the 

polynomial [6]: 
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which has a relative error of magnitude less than 2.3 x for 0.45 2 

koa 2.0. Other eigenvalues, like that of the TMOl mode, change even 

more slowly, and can be approximated by even simpler polynomials. It is 

interesting to note that the first term in (3.56) is equal to the 

eigenvalue of the TEOl mode of the metallic waveguide. Although (3.56) 

is valid only in the specified range of k a, it can be concluded that 0 
the horizontal line corresponding to the eigenvalue of the TEOl metallic 

waveguide mode is the asymptote (koa -+ w) to the eigenvalue curve for 

the same dielectric rod waveguide mode. This is actually true for all 

the TE modes, a fact that is readily established by letting k a -+ w in 0 
(3.55). 

To illustrate the use of the eigenvalue diagram in Fig. 3.5, the 

wavelength of the mode HEM21 dielectric rod waveguide is computed below. 

The waveguide wavelength X is defined as 
g 

The diagram is valid for the material having e = 38.0, and the rod is 

of radius a = 1 cm and operates at frequency 5.0 GHz. From (3.11), one 

finds k a = 1.047 radians. The corresponding eigenvalue is then read 0 
from Fig. 3.5 as x = 3.62. The propagation constant multiplied by the 

radius can now be computed from (3.42), the result being = 5.34 

radians. The wavelength is then obtained from (3.57) to be X - 
g21 - 

1.18 cm. This value is considerably less than the wavelength in free 

space, which is Xo = 6.0 cm. On the other hand, if the whole space was 

filled with a dielectric of a = 38.0, the wavelength would be only - 
6.0/J38.0 = 0.973 cm. The wavelength of the HEM21 mode thus falls 

between these two extremes. In a similar manner, Figs. 3.4 and 3.5 can 

be used to determine the wavelengths of any other mode among the 

thirteen modes shown. 

All the modal fields are evanescent in the radial direction outside 

the rod by virtue of the modified Bessel functions in (3.37). Those - 
modes corresponding to an x > koa Jc are evanescent in the z direction 

as well, since B then becomes purely imaginary. The modal fields 

corresponding to xmn can be determined from (3.30), (3.31), (3.33), 
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(3.34), (3.36), and (3.37), with ymn determined from (3.41) and the 

phase constant /3 from (3.42). Simple relations for the amplitude mn 
coefficients A mnJ J 'mn' 

and Dmn are derived in the next section. 

Since only one of these amplitudes can be arbitrarily chosen, these The 

field lines represent the direction of the field in space. In any 

transverse-to-z plane, then, the electric field lines satisfy the 

differential equation: 

The magnetic field lines satisfy (3.58) with magnetic field cornpone& 

replacing their electric counterparts. Solving (3.58) is a very simple 

matter in the case of TE and TM modes. As can be seen from (3.36) and 

(3.37), one field component in (3.58), whether E and H for the TE 
P b 

modes or E and H for the TM modes, is always zero. The electric field 
b P 

lines are, therefore, given by 

p = constant, for TE modes (3.59a) 

4 = constant, for TM modes (3.59b) 

The equations for the magnetic field lines are similar to those for the 

electric field lines except for the modes reversing roles in (3.59). 

The exact integration of (3.58) for the hybrid modes, however, is rather 

difficult, and computer-generated plots of field lines must then be 

sought. 

Computer-generated plots for the transverse-to-z field distributions 

of the HEMl1, TEO1, HEM21, TMO1, and HEMl2 are given in Figs. 3.6 

through 3.11 for E = 38.0 at different values of x and koa. Each mode 

has separate illustrations for the electric field and separate for the 

magnetic field. The key to the arrow maps is as follows: 

1. Fields with amplitudes within 1.0 dB of the maximum 

amplitude are called strong fields and shown as double 

arrows ; 

2. Fields with amplitudes 1.0 to 3.0 dB of the maximum 

amplitude are called medium fields and shown as long single 

lines ; 
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3 .  Fields with amplitudes 3.0 to 10.0 dB of the maximum 

amplitude are called weak fields and shown as short single 

lines ; 

4 .  Fields with amplitudes of more than 10.0 dB of the maximum 

amplitude are neglected. The points with such fields are 

then left blank in the plots. 

It is worth remembering that the arrow or line drawn at a point is the 

tangent to the field line at that point, and the blank portions do not 

necessarily imply zero field, since z-components of the fields may exist 

there. This form of plotting is very useful in identifying the 

locations of strong fields; a much needed piece of information when 

selecting the coupling device best suited to a particular mode. For 

instance, a short electric probe would be most efficient when oriented 

along an electric field line and placed at a location of a strong 

electric field. 

Fig. 3.6(a) Electric field, HEM11 mode, discretized plot (cr = 38.0, 
koa = 0.5, x = 2.1864) 



DIELECTRIC RESONATORS 

In passing, note that the field lines corresponding to the TE and TM 

modes follow the pattern indicated in (3.59). Generally speaking, these 

field patterns bear some similarity to those of the corresponding modes 

of the metallic cylindrical waveguide filled with the same dielectric 

material. Furthermore, as k a increases, the field intensity for the 0 
HEMll increases inside the rod indicating better field containment 

characteristics at higher frequencies. Indeed, this is shown in the 

next section to be the case for all the dielectric rod waveguide modes, 

not only the first hybrid mode. 

Fig. 3.6(b) Electric field, HEM11 mode, continuous plot (same data as 
in Fig. 3.6(a)) 
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Fig. 3.6(c) Magnetic field, HEM11 mode, discretized plot (same data as 
in Fig. 3.6(a)) 

Fig. 3.6(d) Magnetic field, HEM11 mode, continuous plot (same data as 
in Fig. 3.6(a)) 



Fig. 3.7 

Fig. 3.7(b) Electric field, HEM11 mode, continuous plot (same data as 
in Fig. 3.7(a)) 



Fig. 3.7(d) Magnetic field, HEM11 mode, continuous plot (same data as 
in Fig. 3.7(a)) 
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Fig. 3.8(a) Electric field, TEol mode, discretized plot (er = 38.0, 
koa, x = 3.2672) 

Fig. 3.8(b) Magnetic field, TEol mode, discretized plot (same data as 
in Fig. 3.8(a)) 



Fig .  3 . 9 ( a )  E l e c t r i c  f i e l d ,  HEM21 mode, d i s c r e t i z e d  p l o t  ( e r  = 3 8 . 0 ,  
koa = 1 . 0 ,  x = 3.6339) 

F ig .  3 . 9 ( b )  E l e c t r i c  f i e l d ,  HEM21 mode, continuous p l o t  (same data a s  
i n  F i g .  3 . 9 ( a ) )  
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Fig. 3 data as 

Fig. 3.9(d) Magnetic field, HEM21 mode, continuous plot (same data as 
in Fig. 3.9(a)) 
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Fig .  3 .10  Magnetic f i e l d  TMol mode, d i s c r e t i z e d  p l o t  (cr = 3 8 . 0 ,  
koa = 1 . 0 ,  x = 3.8088) 

F ig .  3 .11 (a )  E l e c t r i c  f i e l d ,  HEM12 mode, d i s c r e t i z e d  p l o t  (cr  = 3 8 . 0 ,  
koa = 1 . 0 ,  x = 4.4509) 
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Fig. 3.11(b) Electric field, HEM12, continuous plot (same data as in 
Fig. 3.11(a)) 

Fig. 3.11(c) Magnetic field, HEM12 mode, discretized plot (same data as 
in Fig. 3.11(a)) 
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3.6 Power Considerations 

An important characterization of the propagating modes for the 

dielectric rod waveguide is in terms of the ratio of the total power 

transmitted by the mode outside the rod to that transmitted inside it, 

which gives a measure of field containment in the rod. The modes can 

also be classified by the portions of the total power transmitted inside 

the rod by the different components of the field. These ratios are 

derived in this section. but first some relations between the amplitude 

coefficients A mn, Bmn, Cmn, and 

The first relation: 

Dmn are established. 

follows immediately from (3.43a) and (3.43b). Substituting (3.59) into 

(3.43~) and (3.43d) and regrouping, we have 

- 
upon using (3.50), (3.51), and (3.52). In (3.61), 7 = JpO/e is the 

wave impedance of the dielectric medium. Consequently, 

The time-average power transmitted by the mnth mode is basically 

where Re denotes the real part , and * denotes complex conjugate. 
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Substituting from ( 3 . 3 6 )  and ( 3 . 3 7 ) ,  ( 3 . 6 4 )  can be written as 

- 
'mn - 'mnl + 'mn2 

where 

2x a 

is the time-average power transmitted inside the rod, and 

is the time-average power transmitted outside the rod. As can be seen 

from ( 3 . 6 6 ) ,  the transmitted power in the rod consists of three distinct 

parts. The first part is due to the TM part of the field, and can be 

recognized by the fact that its amplitude is proportional to A2 It mn' 
can be recalled from ( 3 . 3 0 )  that A is the amplitude of the z-component 

of the electric field. The second part is due to the TE part of the 
2 

field, which is proportional to Bmn. The third part of the transmitted 

power is of mixed nature, its amplitude being proportional to the 

product A B A similar situation exists in region 2, where C 
2 

mn mn ' mn 
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signifies the TM part, the TE part, and CmnDmn the mixed part. The 

transmitted power in region q, q = 1,2, can then be written as 

TE + pTM + pMIX P = P  (3.68) 
rnnq rnnq rnnq rnnq 

For m = 0, PMIX = 0, and the transmitted power decomposes into 
mnq 

TE and TM powers, in the same way as the eigenvalue equation ( 3 . 4 9 )  

splits into two equations for TE and TM fields. 

Two of the desired power ratios can now be immdediately written. 

The ratio of the power transmitted by the TE and TM parts inside the 

rod, denoted R is given by mn' 

The ratio of the TE to the TM part of the transmitted power outside the 

rod is then 

The different components of the transmitted power both inside and 

outside the rod can then be determined once the ratio: 

PTE + PZ 
mna 

D 
' rnnq 

1 + mna 
PTE + PTM 
rnnq rnnq 

is determined. It is convenient to introduce auxiliary constants Umn 

and Vmn as follows: 
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The ratio which can be used to compute the mixed power inside the rod is 

then 

MIX - 2 2 
'mnl 2mkoJtrRmn (1 + Bm,/koer) 

D = 1 TE T M = -  2 
'mnl + 'mnl @mnXmn(l + Rmn)"mn 

Outside the rod, the corresopnding ratio becomes 

Finally, the ratio of the total power transmitted in the air to the 

total power transmitted in the rod is given by 

It should be noted that in reference 161, the mixed parts of the 

transmitted power (both Dl and D ) are mistakenly taken to be zero. 2 
Figure 3.12, which shows the ratio R from (3.69), can be used to mn 

classify the hybrid modes into two separate categories, depending on 

whether the larger part of the power transmitted within the rod is 

carried by the TE part of the field or by the TM part. The modes with 

TE > are called quasi-TE modes, and those with PTE < pZl are 
'mnl mnl 
called quasi-TM modes. It is interesting to note that HEMmn modes are 

quasi-TM for an odd value of n, and quasi-TE for an even value of n. In 

the literature on optical fibers, the quasi-TE modes are commonly called 

HE modes, in accordance with the notation introduced by Snitzer [lo]. 

Similarly, quasi-TM modes are called EH modes. The correspondence 

between various notations is as follows: 

quasi-TM (or EH ) equivalent to HEM 
m,n m,n m, 2n-1 
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quasi-TE (or HE ) equivalent to 
m,n m,n 

It should be mentioned that HEM notation was standardized by the IRE 

(nowadays known as IEEE) in [Ill. 

Fig. 3.12 The ratio of the TE and TM parts of the power transmitted 
inside the dielectric rod waveguide (cr = 38.0) (reference 
( 6 1 ,  01983 Microwave Systems News) 
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3.7 The Parallel-Plate Dielectric Resonator 

Dielectric resonators can take on various shapes. The simplest, 

perhaps, can be constructed by placing a section of the cylindrical 

dielectric rod waveguide of length h between two parallel conducting 

plates as shown in Fig. 3.2. 

When a section of any uniform waveguide is enclosed between two 

parallel metal plates, a standing wave pattern is created in the z- 

direction. Furthermore, the normal component of the magnetic field must 

vanish at the surface of a perfect conductor, whereas that of the 

electric field becomes proportional to the surface charge density there. 

The presence of the plates is therefore properly accounted for by 

writing cos(pz) for e-jpz in (3.30) and (3.33), and sin(8z) in (3.31) 

and (3.34). Consequently, 

where X is the dielectric rod waveguide wavelength, and p is an 
g 

integer. Thus, the height h is an integral multiple of half 

wavelengths, 

There is only one discrete set of frequencies that satisfies both 

(3.42) and (3.76). Such frequencies, called the resonant frequencies of 

the parallel-plate dielectric resonator, can be determined graphically 

with the help of the eigenvalue diagram. Using (3.42) and (3.76), the 

value of x at resonance is determined by 

where 
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and 

Relationship (3.79) is readily recognized as a family of hyberbolas - - 
with foci at f pul Jer+l and an eccentricity of Jcr+l [8, Ch. 81. The 

eigenvalue diagram is of universal nature, valid for all frequencies f 

and all radii a. For given resonator dimensions a and h, the family of 

hyberbolas can be plotted for different p's. Superimposing the curves, 

the two families of curves intersect at a certain set of points (xmnp, 

(koa)mnp). The resonant frequencies are then given by 

where a is measured in millimeters. Figures 3.13 and 3.14 illustrate 

the graphical procedure for parallel-plate dielectric resonators with 

e = 20.0 and cr = 38.0, respectively. 

The graphical method is a good tool for predicting and identifying 

the various modes of the dielectric resonator. A more accurate 

evaluation of the resonant frequencies has to be carried out 

numerically. The advantage of the graphical procedure, such as in Fig. 

3.13 or 3.14, is that one can easily recognize the order in which 

resonant frequencies of various modes will appear. For fixed radius a 

and fixed length h, the abscissa k a grows proportionally to frequency. 0 
Thus, one can see that the lowest resonant frequency belongs to the 

HEMll resonance, the next higher is TEOll, and then HEM211, TMOll, etc., 

follow. These resonant modes are simply found by moving along the 

appropriate hyperbola for p = 1 from left to right, and observing the 

intersections with the eigenvalues of various modes. For example, for 

a = 38.0 and a = h = 4.25 mm, the hyberbola p = 1 intersects the TM r 0 1 
mode of the dielectric rod waveguide at koa - 0.82. It then follows 

TM TM from (3.82) that fOll = 9.21 GHz. The mode corresponding to fOll is 

evidently the TMOll mode, whose field distribution in any transverse-to- 

z plane is that of the TMOl rod waveguide mode. Table 3.1 shows some of 

the resonant frequencies obtained graphically for a = h = 4.25 mm. 
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Fig. 3.13 Graphical determination of the resonant frequencies of 
the parallel-plate dielectric resonator (cr = 20.0) 
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Fig. 3.14 Graphical determination of the resonant frequencies of 
the parallel-plate dielectric resonator (er = 38.0) 
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TABLE 3.1 RESONANT FREQUENCIES OF THE PARALLEL-PLATE 
DIELECTRIC RESONATOR (a = h = 4.25 mm) 

f (GHz) 
Mode 

E =20.0 ~ = 3 8 . 0  r =20.0 E =38.0 
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3.8 Measurement of the Dielectric Constant 

The parallel-plate dielectric resonator can be used to measure the 

dielectric constant of a dielectric material. The principles involved 

in the measurement are rather simple. The resonant frequency of a given 

mode, preferably TEOll, is measured for a resonator of known radius a 

and length h. Afterwards, the dielectric constant is computed from 

(3.40), (3.49), and (3.76). The procedure was first introduced by Hakki 

and Coleman [12]. The error analysis and the investigation of 

temperature effects were made by Courtney [9]. The method is now 

commonly known as the Courtney method. 

If the distance h between the two parallel plates is smaller than 

one-half wavelength, the parallel-plate dielectric resonator operating 

in the TEOll mode does not radiate. In this case, the sides of the 

resonator can be left open for easy inspection, or for inserting 

semirigid coaxial cables which serve for input and output coupling. The 

sample holder used by Courtney is shown in Fig. 3.15. 

Fig. 3.15 The Courtney holder (reference [ 9 ] ,  Q1970 IEEE) 
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Typical accuracy of the measurement of the dielectric constant e is 

0.3 % .  Courtney estimated this error by assuming that the resonant 

frequency is measured with an accuracy of 0.1 % ,  and that the dimensions 

of the sample are measured with an accuracy of 0.2 % [9]. 

In the Courtney method, each sample is measured at only one resonant 

frequency, which is that corresponding to the TEOll mode. In addition 

to this resonant frequency, one can experimentally observe the existence 

of many other resonant frequencies. If one can positively identify 

other resonant modes, it is possible to measure the value of e from 

these various measured resonant frequencies, as shown in [13]. By using 

the resonant modes TE 011, TE021, TE031, and TE041, the dielectric 

constant of a single sample was measured in the range between 4.2 and 

10.6 GHz. Furthermore, it was found that the quasi-TE modes are also 

well suited for this measurement, in particular HEM121, HEM221, and 

HEM141. The major challenge in using higher resonant modes, however, is 

the positive identification of each mode. 

The parallel-plate resonator used in [13] is shown in Fig. 3.16. 

The resonant frequency is measured by the transmission method, and the 

signal input and output are provided by coaxial cables, which have small 

loops, as shown. The vertical position of the loops can be varied with 

SPACER EQUAL TO 
METAL PLATE RESONATOR HEIGHT 

COAX UIJ 
CABLE CLAMP 0.085" SR COAX 

TERMINATED BY 
SMALL LOOP 

Fig. 3.16(a) Modified Courtney holder, side view (reference [13], 
01985 IEEE) 
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TAPPED HOLES FOR PROBE 
GROUNDING SCREWS 

Fig. 3.16(b) Modified Courtney holder, top view (reference [13], 
a1985 IEEE) 

the use of grounding screws which protrude through each of the two 

parallel plates. This movement enables the observer to determine the 

number of standing waves in the z-direction, and, therefore, identify 

the thrid subscript, p, of the resonant mode. 

Another simple indicator of the nature of the resonant mode is the 

orientation of the coupling loop. By rotating the loop around the axis 

of the coaxial cable, the magnetic field crossing the loop will induce 

either a large signal or a small signal in proportion to the intercepted 

flux over the area of the loop. By studying the field patterns of 

various modes, it is possible to predict whether the signal of a 

particular mode should be stronger for a horizontal orientation or a 

vertical orientation. The third indicator for mode identification is 

the azimuthal variation of the field. When the first subscript of the 

resonant mode is m = 0, there should be no variation of the field with 

. The azimuthal dependence of the field may be observed by moving one 

of the probes at any of the three different locations, denoted 18O0, 

135", and 90°, in Fig. 3.16. 

The results of one mode identification study are shown in Fig. 3.17. 

The observed modes are spaced horizontally at equal distances in order 

of growing frequency. The vertical axis gives the observed signal level 
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Fig. 3.17 Mode identification chart (reference [13], 01985 IEEE) 

HORIZONTAL LOOPS VERTICAL LOOPS 
0-180' A-135' 13-90' 0-180' 4 3 5 '  W90e 
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180°, triangles for 135', and squares for 90'. Two of the observed 

resonances, which could not be positively identified, are left without 

names: one occurring at 6.47 GHz and the other at 7.05 GHz. 

It is concluded in [13] that neither the quasi-TM modes, nor the TM 

modes, are suitable for the measurement of e The main reason is the 
r' 

fact that the presence of a minute air gap between the dielectric sample 

and the metal plate may considerably alter the resonant frequency, 

thereby ruining the accuracy of measurement. This fact was already 

pointed out by Cohn and Kelly 1141. 

Another reason why the TM and quasi-TM resonant modes are not 

suitable in the measurement of e has been pointed out by Kobayashi and 
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Katoh [15]. They have shown these resonant modes to be leaky, in the 

sense that a part of electromagnetic energy is propagating radially 

outward. The leaky TM modes have no radial cut-off frequency, and, 
O ~ P  

consequently, they have a low Q factor. Kobashi and Katoh also provide 

diagrams for estimating minimum radial dimensions of the metal plates 

which constitute the parallel-plate resonator operating in the TE 
O ~ P  

mode. 

Hakki and Coleman [12] derived formulas which also enable one to 

determine the loss tangent of the dielectric material in the same 

parallel-plate arrangement. At the resonant frequency of the TEOll 

mode, one needs to measure the unloaded Q factor, QO, of the resonator 

Since the losses are partially caused by the loss tangent of the 

dielectric sample, and partially by the resistivity of the two parallel 

metal plates, one has to subtract the two effects from each other. 

Quoting 1121, the loss tangent is given by 

A tan 6 = - -  B 
Qo 

where 

is the surface resistivity of the metallic plates (16, Sec. 5.141. 
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Chapter 4 
SIMPLE MODELS 

Darko Kajez 

4.1 Introduction 

An accurate mathematical description of the electromagnetic field in 

a dielectric resonator (DR) is considerably more complicated than the 

field description in a hollow waveguide resonator. If the numerical 

result for a DR is to be obtained for a given set of dimensions, a large 

computer is traditionally required because of the large size of the 

matrices involved and the large number of operations which has to be 

performed. 

It is of great practical interest to approach the solution of the 

electromagnetic field in the DR in some simplified way that is still 

capable of giving results which are not too far from the exact values. 

Two such simple mathematical models of DR to be described here are the 

Cohn model and the Itoh and Rudokas model. Before the Cohn model is 

described, a brief review of the notion of the perfect magnetic con- 

ductor will be presented in the next two sections. 
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4.2 Notion of the Maenetic Conductor 

Consider a textbook case of the plane wave incident on the interface 

of two different dielectric media as shown in Fig. 4.1. To make the 

situation as simple as possible, assume that the direction of the plane 

wave is normal to the interface, i.e., the incident wave propagation is 

oriented in the of positive z-direction. Then, a part the energy of the 

incident wave will be reflected back from the interface as a plane wave 

traveling in the negative z direction in medium 1. The rest of the 

energy will cross the interface and propagate as a transmitted wave in 

medium 2. 

Fig. 4.1 Plane wave incident to the interface of two dielectric media 

The electric and the magnetic fields in medium 1 are 

-jklz jklz 
E (z) = E e xl A + EB e 
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and in medium 2: 

-1 k2z 
E (z) = E e x2 C  

The propagation constants in each medium are 

k = wJp E E and k = wJp c E 
1 0 0 rl 2 0 0 r2 

The intrinsic impedances in two media are 

- / end 
"1 - C E 0 rl " 2 = / k  

At the interface of two media (coordinate z = O), the tangential 

electric field must be continuous, such that 

Exl(0) = Ex2(0) 

which leads to 

E + E  = E  
A B C  

The other requirement at the interface is that the tangential magnetic 

field must be continuous, such that 

which results in the following: 

Dividing (4.8) by (4.10) and then solving for the ratio of the reflected 

to the incident wave amplitude, we obtain 
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Consider first the situation in which medium 1 has a higher 

dielectric constant than medium 2. For various ratios c rl/cr2t the 

reflection coefficient EB/EA will take values such as those listed in 

Table 4.1. 

Table 4.1 PLANE WAVE INCIDENT FROM INSIDE 
OF THE DIELECTRIC MATERIAL 

When the ratio of dielectric constants is much larger than unity, 

the reflection coefficient grows toward +1, and most of the energy of 

the plane wave is reflected back in medium 1. Only a small portion of 

the energy escapes into medium 2. 

The total electric field in medium 1, which is the sum of the inci- 

dent and the reflected waves, displays a standing wave pattern as indi- 

cated in Fig. 4.2a. The figure is drawn for the case where crl = 100 

and \2 = 1. It can be seen that the electric field at the interface is 

maximum. When the ratio c rl/cr2 grows to infinity, an open circuit 

situation is achieved. 

The field inside a dielectric resonator is not as simple as the 

plane wave described above. Nevertheless, any general EM field distri- 

bution can be considered as a summation of various plane waves incident 

under all possible angles. For a plane wave which is incident by an 

angle other than normal, the reflection coefficient is even larger than 

the one given by (4.11), as can be verified in textbooks on EM theory 

(e.g., [1,21). 

For this reason, an approximate computation of the electromagnetic 

field inside the region made of high dielectric material is possible by 

assuming that the surface of the dielectric is covered with a perfect 
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Fig. 4.2(a) Standing wave pattern, er- > cr2 

Fig. 4.2(b) Standing wave pattern, erl < er2 

magnetic conductor (PMC). This is a nonexistent material which requires 

the magnetic field tangential to its surface to be zero. The higher the 

value of the relative dielectric constant s the more accurate are the 
r' 

fields computed by the PMC approximation. An application of this 

principle is illustrated in Fig. 4.3. Assume that a DR of radius a and 

length L is resting on a ground plane as shown in Fig. 4.3(a). Then, an 

approximate model for computing the electromagnetic field inside the 

dielectric is the idealized cavity shown in Fig. 4.3(b), the bottom wall 

of which is covered with the PEC, whereas the top and the side walls are 

covered with the PMC. 
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AIR 

Fig. 4.3 Approximate model for the field inside the dielectric region 

In Fig. 4.2(b), the role of dielectrics is reversed, and one 

observes a plane wave coming from the low-c region upon the interface 

with a high-c material. Again, a part of the wave is reflected and 

another part is transmitted. The reflection coefficients for various 

values of E rl/cr2 are given in Table 4.2. 

Table 4.2 PLANE WAVE INCIDENT FROM OUTSIDE 
OF THE DIELECTRIC MATERIAL 

It should be noticed that, again, the reflection coefficient has a 

larger amplitude when the two materials are more dissimilar. When the 

dielectric constant of the region 2 grows to infinity, the reflection 

coefficient tends toward negative unity. It is known from transmission 

line theory that this signifies a short-circuit situation. As seen in 

Fig. 4.2(b), the total electric field has a minimum at the position of 

the interface. The figure has been drawn for the case where crl = 1 and 

Er2 = 100. 

Therefore, for an approximate computation of the electromagnetic 

field outside the region of the high dielectric material, the interface 

may be covered with a perfect electric conductor (PEC). As an example 

of this principle, consider a hollow cylindrical cavity which is tuned 

by means of a dielectric rod, as shown in Fig. 4.4(a). An approximate 
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Fig. 4.4 Approximate model for the field outside the dielectric region 

computation of the electromagnetic field in the cavity can be made by 

assuming that the high-e dielectric rod has been replaced by a PEC rod, 

as shown in Fig. 4.4(b). 

The accuracy of the resonant frequencies for various modes obtained 

by these two approximate procedures may not be very good, but, neverthe- 

less, one can obtain information on what kinds of modes can be expected, 

and approximately how the fields look. 
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4.3 Circular Waveeuides with Maenetic Walls 

This section contains a review of the solutions of Maxwell's 

equations in the circular cylindrical system of coordinates. The 

purpose is to collect all the formulas which will be applied in subse- 

quent sections. While classical textbooks on electromagnetics develop 

the modes in circular waveguides with walls made of PEC, here we will 

present the solutions for walls made of PMC. 

To obtain all the vector components of the electric and the magnetic 

field, it is convenient to start from the z component of the magentic 

field. The Helmholtz vector equation is then reduced to the scalar 

equation (3.20): 

2 2 V H  = - k a H  O r z  

The separation-of-variables procedure is based on the assumption that 

the solution of this differential equation is a product of three 

functions, as in (3.23): 

The direction of wave propagation is along the z axis so that the Z(z) 

function takes the following form: 

When the losses in the waveguide are neglected, the waveguide propa- 

gation constant 7 may be either pure-real: 

y = a (evanescent modes) 

or pure-imaginary: 

7 = jp (propagating modes) (4.16) 

As explained in Ch. 3, the azimuthal variation is described by 

trigonometric functions, 

where m is an integer. For the circularly symmetric modes, such as the 
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important TEOl mode, the integer m is zero, and the field has no vari- 

ation in q5 direction. 

The radial variation is given in terms of Bessel functions [I]: 

The radial wave number k is specified by 
P 

where 7 is given by either (4.15) or (4.16). In some situations, the 

radial dependence is described by modified Bessel functions: 

In that case, k is defined as 
P 

.Again, -y2 can be either a positive or a negative real number. For a 

mode propagating in the z-direction, (4.16) gives 

and, for an evanescent mode, (4.15) gives 

When a solution of the Helmholtz equation for the z component of 

the H field is determined, the other field components may be obtained by 

simple differentiation [I]. This procedure will be explained for the 

example of TE modes (EZ = 0). The Maxwell equation: 

splits into the following three scalar equations: 
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The other Maxwell equation: 

V x = jucE (4.28) 

is decomposed similarly into the following set of equations: 

The right-hand side of the last equation is equal to zero because, for 

the TE modes, E is zero by definition. 

From (4.25) and (4.30), it is possible to eliminate E to obtain 
9 

1 a 2 ~ z  H = - -  
p k2 azar 

P 

From (4.26) and (4.29), one can likewise eliminate E 
9: 

When (4.32) is substituted in (4.30) and the separation equation (4.19) 

is used, E is expressed in terms of H as follows: 
6 

Also, E can be expressed in terms of H by the use of (4.29) and 
P 
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( 4 . 3 3 )  : 

The four equations ( 4 . 3 2 )  to ( 4 . 3 5 )  permit one to calculate all the 

components of the electric and the magnetic TE fields by performing 

simple differential operations on the H component. For the circularly 

symmetric modes, the derivatives with respect to 4 are zero, so that all 
the TEon modes must have 

E = O  and H = O  
P 0 ( 4 . 3 6 )  

For later reference, the derivatives of Bessel functions appearing in 

the TE modes are listed below: 

The integrals which will be needed later are 

A 
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2 2 2 
P)P~P = > + *_ Kl(kpa)KO(k,,a) - K (k a)] (4.44) 

P 1 P  

It is now possible to construct the fields for various TE modes in mn 
hollow cylindrical waveguides with PMC walls. The results are very 

similar to the modes in waveguides with PEC walls. The boundary con- 

dition for the PMC waveguide is that H must be zero at p = a. In 

addition, H must be finite at p = 0, so that the Bessel functions of 

the second kind must not be used (B3 = 0 in (4.18)). The boundary con- 

ditions require H to satisfy the following: 

The zeros of the Bessel function of the first kind are denoted by x 
mn' 

whereby 

Jm(xmn) = 0, for n = 1,2,3, . . .  (4.46) 

For instance, x~~ is the second zero of the Bessel function of the first 

kind, of order three. Some of these zeros are listed in Table 4.3, 

which was compiled from [3]. 

Table 4.3 ZEROS OF THE BESSEL FUNCTION OF THE FIRST KIND 

When the TMmn modes in cylindrical waveguides with PMC walls are 

desired, the boundary conditions require the derivative of the Bessel 

function to be zero. The zeros of the derivative of the Bessel function 

of the first kind are denoted by x' as follows: 
mn 

J1(x' ) = 0, for n = l,2,3, . . .  m mn 
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Several lowest zeros, compiled from [ 3 ] ,  are listed in Table 4 . 4 .  

Table 4 . 4  ZEROS OF THE DERIVATIVE OF THE BESSEL FUNCTION 
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4.4 The Cohn Model 

The electromagnetic field inside a DR with high dielectric constant 

may be approximately described by assuming that all the surfaces are 

covered by the perfect magnetic conductor, as explained in Sec. 4.2. 

Such a "first-order" model of the DR is shown in Fig. 4.5(a). This is 

nothing other than but a circular cavity resonator, the walls of which 

are made of the PMC. Using known procedures for the analysis of hollow 

Fig. 4.5(a) First-order model of a DR 

resonators, it is possible to compute the resonant frequency of this 

first-order model. Unfortunately, the computed results are 20 % and 

more off the measured values so that this model is not very useful for 

anything other than a homework assignment in a second course on fields 

and waves. 

An improvement of the first-order model is the "second-order" model 

described by Cohn [4], which is shown in Fig. 4.5(b). The cylindrical 

PMC shell is retained, but the PMC end caps are removed and replaced by 

the air-filled hollow waveguides. These two hollow waveguides operate 

below the cutoff because they are filled with the low dielectric 

constant. Thus, the modes in these air-filled PMC waveguides are eva- 

nescent so that the fields decay exponentially in the z direction away 

from each end of the resonator. 

The model in Fig. 4.5(b) is appropriate for describing the electro- 

magnetic fields of an isolated DR far from any neighboring objects. 

Such an isolated resonator acts as a miniature antenna, and the energy 

lost on radiation is manifested in low Q values. The measured Q factor 

of an isolated TEOls resonator is about 50 [5]. In order to keep the 
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Fig. 4.5(b) Second-order Cohn's model of an isolated DR 

unloaded Q factor of a DR reasonably high (a typical requirement is 

about 5000), it is necessary to prevent radiation by enclosing the DR 

within a metal shield. An inexpensive solution is to glue the DR to the 

dielectric substrate, which is used for microstrip interconnections of 

the microwave system in question. The entire substrate is then placed 

within a metal box. The box acts as a shield which prevents the 

external fields from penetrating the system and, by the same token, 

reduces the loss of energy due to radiation. 

The modification of the Cohn model which incorporates the parallel- 

plate metal enclosure is shown in Fig. 4.5(c). The radius of the die- 

lectric resonator is a, its relative dielectric constant is 6 and r' 

Fig. 4.5(c) Second-order Cohn's model of a shielded DR 

its length is L. The region with relative dielectric constant c rl may 
represent the dielectric substrate on which the resonator is attached. 

The thickness of the substrate is L1, and the outside face of the 
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substrate is covered with the perfect electric conductor. The region of 

the length L2 then represents the air-filled space above the resonator, 

and the PEC cap on the right most side of Fig. 4.5(c) is the metal lid 

of the shielding box. 

We will next construct the electromagnetic field of the TEOl mode 

which satisfies the boundaries of Fig. 4.5(c). Since c >> 1, the mode 
within the PMC waveguide of length L is above cutoff so that the propa- 

gation constant -y becomes equal to jp.  The field within the region 

0 < z < L is, then, 

The other field components follow from (4.32) and (4.34): 

These are the only non-zero components 

The radial propagation constant of 

requirement (4.46), which gives 

for the TEOl mode. 

this mode is fixed by the 

In regions 1 and 2, the dielectric constant is much lower than c 

and the modes are evanescent. The propagation constant -y is now given 

by a1 or a2, depending on which region is being considered. The radial 

variation in these two regions is specified by the same k as in (4.51), 
P 

so that the fields are continuous at the interfaces z = 0 and z = L (as 

will be shown next). 

For region 1, the HZ field is thus, 

E is obtained from (4.34): 
d 
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At z = -L E must vanish because of the conducting wall. This 1' 41 
requirement results in 

E field may be now expressed in terms of the hyperbolic sine function: 
dl 

The components of the magnetic field in region 1 are then given by 

In an analogous manner, the fields in region 2 are formulated as 

follows : 

The separation constants are 
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The next step in setting up the field model is to ensure that the 

tangential components of the electric, as well as the magnetic field, 

are continuous at the interface. At z = 0, we require E 

H = H . This provides two equations: 
41 = Ed and 

Pl P 

Dividing (4.64) by (4.65), C1 is eliminated, thus, 

tanhaL = L.A+B 
1 1  jp A - B  

Similarly, by specifying E = Ed2 and H = H at z = L, we obtain 
P P2 

a2 AejSL + Be-jBL 
tanh (-a L ) = 7 

2 2 JB AejBL - Be-jBL 

The two constants A and B have been selected to describe the amplitudes 

of the forward and reverse traveling waves inside the resonator. For a 

complete standing wave pattern, the amplitudes of A and B must be the 

same. Their ratio is then a complex number of unity magnitude, and as 

of now, undetermined phase 

Then the right-hand side fraction in (4.66) becomes 

A+" = j cot i 
A - B  2 

and the right-hand side in (4.67) gives 
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When (4.69) is substituted in (4.66) and solved for 4, the result 

becomes 

where the value of phase angle 4, expressed in terms of the parameters 
of region 1 only, was denoted by $ Similarly, from (4.70) and (4.67) 1' 
the. following is obtained: 

$1 PL - - = tan 2 
-' coth a L 

2 2 1 
It is now convenient to denote the right-hand side of (4.72) by d2/2, in 

analogy with (4.71): 

$2 - = tan -1 L 2  - coth a 2 ~ 2  I 
The resonance condition (4.72) is now written as 

For generality, the added angle Qr gives all possible resonance 

conditions. When Q = 0, the mode is called TEO16, where 6 signifies a 

non-integer number, smaller than unity: 

In general, the modes may be denoted by TEOlp, where 

p = Q + 6 for !2 = 0,1,2,3, . . .  (4.76) 

In traditional hollow waveguide resonators, the third subscript 

denotes a number of half-wavelength variations of the field as a 

function of coordinate z. In that case, the subscript is always an 

integer. As we have just seen, for the TEOl6 mode, the field variation 
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in a DR undergoes less than one half-wavelength variation within the 

resonator length L. The difference is caused by the end effects at 

z = 0 and z = L. 

Consider a special case of L1 = 0 and L = 0. This represents a DR 2 
sandwiched between two parallel plates which are touching each resonator 

end. From (4.71) and (4.73), one obtains b1/2 = n/2 and g2/2 = n/2. 

The lowest resonance (Q = 0) is then given by PL = r r .  

As another extreme, assume the two metal plates are moved to 

infinity (L = m and L2 = m ) .  Equations (4.71) and (4.73) then reduce 

to 

41 - = tan 42 ] and = tan-' k] 
This represents an isolated resonator in the free space. In this case, 

crl = cr2 = 1, and the resonance condition (4.74) becomes 

with a and P given by (4.61) and (4.63). 
As an example, take an isolated DR in free space (c rl = cr2 = 1). 

The resonator material is c = 38, its radius is a = 5.25 mm, and its 

length is L = 4.6 mm. From the exact numerical solution, it is known 

that the resonant frequency is 4.82 GHz [ 5 ] .  From the Cohn "second- 

order" model, a numerical solution of the transcendental equation (4.78) 

gives 4.60 GHz (an error of -4.8 %). This is certainly an improvement 

over the Cohn "first-order" model which, for the same DR, estimates the 

resonant frequency to be 6.37 GHz (an error of +32 %).  However, for 

practical applications, it would be desirable to have an even more 

accurate model than the Cohn second-order one. 
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4.5 Perturbational Correction to the Cohn Model 

The electromagnetic field in the Cohn model of the DR. shown in Fig. 

4.5(b) and 4.5(c), is zero everywhere outside the PMC wall (i.e., for 

p > a). In reality, the tangential field outside the cylindrical 

surface of the resonator is of the same strength as the tangential field 

on the inner side of that surface, and then gradually decreases when an 

observer moves radially away from that surface. Thus, a part of the 

total stored electric, as well as magnetic, field energy also exists in 

the region p > a, and this part of the energy is entirely neglected in 
the Cohn second-order model. 

To improve the model, we retain the same electric and magnetic 

fields inside p < a as for the PMC model from Fig. 4.5(c). However, we 

then remove the PMC wall and postulate that the outside tangential 

electric field at p = a must be continuous with the inside tangential 

field. The expanded DR model consists of six regions, as shown in Fig. 

4.6. Note that the region inside the high dielectric is now denoted as 

region 6. The electric field in this region is the same as in the Cohn 

model : 

E - E J (k p )  cos 416- 0 1  p 

Fig. 4.6 Shielded DR 
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The electric fields in regions 1 and 2 are 

41 
cos 7 

COS t2 
E - J (kp) sinha2(z-L2-I) 

42 - Eo sinha2L2 1 p 
(4.81) 

The multiplicative factors have been selected in such a way that E is 
4 

continuous over the interfaces between regions 1 and 6, and between 

regions 2 and 6. 

The field in the outer regions 3, 4, and 5 will now be selected in 

such a way that the radial dependence will be determined by the modified 

Bessel functions, which are monotonically decaying with increasing radi- 

us p. The axial dependence should be the same as in the corresponding 

inner regions 1, 6, and 2. Thus, the electric fields are 

The separation constant k appearing in the above equations, is 
P2' 

obtained from (4.21) as follows: 

A convenient formula for computing k a from the known values of 
0 

frequency f and radius a is the following [6]: 
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The multiplicative constants Jl(k a) etc. ensure the continuity of the 
P 

electric field at the interface p = a. For instance, when (4.79) and 

(4.82) are compared at p = a, it is seen that E is an identical 
94 

function of z as E The same is true at interfaces of the other 
96. 

regions. 

Figure 4.7(a) shows the computed distribution of the electric field 

vs. radial distance for a DR with er = 38, a = 5.25 m, L = 4.6 mm. The 

variation of the field in region 6 (r < a) is described by the function 

Jl(kcr). It is seen that it starts from zero at the origin, reaches a 

maximum at p/a - 0.75 and then, at p = a, decreases to a value about 

89 % of the maximum. In region 4, the field is given by the function 

K (k p) which behaves somewhat like a decaying exponential function. 
1 ~2 

0 I 2 
Fig. 4.7(a) Electric field vs. radial distance 

The magnetic field in each region may be computed from the electric 

field by using the Maxwell equation 



DIELECTRIC RESONATORS 

For example, the magnetic field in region 6 is given by 

H~~ = j 4 E ~ J ~ ( ~ ~ P )  sin [ BZ - $1 
In the resonator, the magnetic field is in time quadrature with the 

electric field (note the factor j). As a function of p, the radial 

component of H is specified by J (k p), which means that H behaves 
1 P  P 6 

like E in Fig. 4.7(a) (except for the multiplicative constant). On 
66 

the other hand, the z component of the magnetic field is described by 

the function J (k p), which vanishes at p = a (see Fig. 4.7(b)) in 
O P  

accordance with the location of the PMC wall. 

When the H field is computed by (4.87) in an outside region, such as 

region 4, it consists again of two components as follows: 

Comparing (4.91) with (4.89) at p = a, one finds that the radial com- 

ponent of the magnetic field is indeed continuous at the interface. 

However, H is not continuous because HZ6(p=a) = 0, whereas H given by 24 
(4.90) has no zero for any z. This fact clearly demonstrates that the 

field model is far from perfect. In order to make the field expressions 

complete, it would be necessary to utilize infinite series of various 

functions in each region. This can certainly be accomplished, as has 

been done for an open resonator by Tsuji et al. [7]. For an enclosure 

similar to the one in Fig. 4.6, complete field expansions were developed 

by Hong and Jansen [a]. However, the field expansions of this kind 

require considerably more computational effort than we wish to invest 

here. 
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There is one simple way to make the magnetic field continuous, 

however. It can be postulated that the z component of the magnetic 

field is zero for p > a: 

HZ3 - 0 , HZ4 = 0 , and HZg = 0 

Such an assumption makes H continuous as represented in Fig. 4.7(b) 

It is amazing how this crude approximation improves the numerical 

results. 

Fig. 4.7(b) Axial magnetic field vs. radial distance 

The electric and the magnetic fields in regions 1 through 6 will 

next be used for determination of the resonant frequency by the use of 

the perturbational principle. Consider a general resonant cavity with 

PEC walls such as shown in Fig. 4.8(a). At the resonant frequency w o ,  

the fields inside the cavity volume are denoted by go and Ho. If now 

the metal wall of the cavity is pushed inward for a volume AV, as in 

Fig. 4.8(b), the resonant frequency changes by the following amount [9, 

sec. 7.21: 



DIELECTRIC RESONATORS 

2 [u bl!+,l2 - c b o l  )dV 
o - o  

o =  
2 "o I I ~ ( P ~ B , , I ~ + ( ~ E ~ ~ ) ~ V  

v 

Fig. 4.8 Cavity perturbation 

In the above expression, we recognize that the numerator represents the 

difference of the stored magnetic and electric energies in the volume 

AV, whereas the denominator represents the sum of both energies 

integrated over the entire volume V. 

In our model from Fig. 4.6, the volume AV consists of regions 3, 4, 

and 5, and the PMC wall has been moved outward instead of inward. 

Denoting the stored magnetic energy in region i by W and the stored mi 
electric energy 

frequency o of 

by Wei, we obtain the following formula for the resonant 

the perturbed resonator: 

In the above, wo is the resonant frequency of the Cohn model before 

perturbation. 

The evaluation of integrals for the stored energies in individual 

regions can be accomplished in analytical form. The resulting formulas 

are not very illuminating, and they will not be listed here. When 

programmed on a personal computer, (4.94) gave an improved accuracy in 

comparison with the Cohn model. For instance, for the example of the 

isolated DR described at the end of Sec. 4.4, the perturbational 

correction gave the resonant frequency as 4.85 GHz, which differs only 

0.5 % from the value computed by the surface integral equation method. 
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Unfortunately, the perturbational formula is not as accurate for 

shielded resonators. When compared with measured results from the 

literature [10,11], the largest discrepancy was found to be 1.5 8 (see 

Table 4.5). 

The instructions for use of the computer program of the Cohn model 

with perturbational correction are given in Appendix 4.A. The program 

called DRESP is written in BASIC language and is implemented on the IBM 

PC. Besides computing the resonant frequency, it also provides a table 

of the energy distribution in various regions, and it plots the field 

distribution as a function of the z-coordinate. 

Several diagrams of the field distribution computed by DRESP will be 

presented here in order to acquire a better familiarity with the be- 

havior of dielectric resonators. The horizontal coordinate represents 

the distance in the z-direction, and the vertical coordinate represents 

the relative field amplitude. One can observe in Figs. 4.9 to 4.13 that 

H component has the same sign everywhere in space, while the H 
P 

Fig. 4.9 Field distribution in an isolated DR 
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component changes sign at about the center of the DR. 

The field distribution in an isolated DR made of material with 

E = 38 can be seen in Fig. 4.9. It is sufficient to select the 

distance to the shielding PEC plate to be about three times as large as 

the resonator length (L1 = 3L and L2 = 3L) in order to make the effect 

of the plates negligible as far as the resonant frequency is concerned. 

Observe that the H component is an even function of z ,  while the H 
P 

component is an odd function of z. The greatest intensity of either 

field is concentrated within the resonator, and only a rapidly decaying 

field exists outside of the dielectric region. In Fig. 4.10, the left- 

hand PEC wall is brought close to the resonator by selecting L1 = L/2. 

The maximum of the H field is no longer at the center of the DR, but 

Fig. 4.10 Field distribution, L1 = , erl = 1 

has moved slightly to the right. In Fig. 4.11, the distances are the 

same, but a dielectric slab of 6 = 10 has been placed between the 

resonator and the PEC. This situation should imitate a DR resting on an 

alumina substrate. There is very little difference between Fig. 4.10 
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L 
Fig. 4.11 Field distribution, L1 = - 2 , Erl = 10 

and Fig. 4.11, except that Fig. 4.10 has slightly stronger fields in 

region 1. Another slight difference is a change in frequency from 

5.00 GHz (Fig. 4.10) to 4.95 GHz (Fig. 4.11). 

Figure 4.12 depicts the DR placed directly on the metal wall. Note 

that the solid line, which is proportional to either E or HZ, is zero 
4 

on the left face of the resonator. The reason for this is the boundary 

condition requiring that the tangential electric field on the surface of 

the PEC must vanish. Figure 4.13 shows the situation in which both 

metal walls are touching the resonator. This is the situation for the 

TEOll resonator in the Courtney holder used for the measurement of the 

dielectric constant (see Sec. 3.8). In this mode, the field variation 

in the z-direction consists of exactly one-half wavelength. 

In all the previously shown cases, the variation within the 

resonator consisted of less than one-half wavelength. Finally, Fig. 

4.14 shows a resonant mode TE 
Ol,l+6 ' 

which exhibits more than one-half 

wavelength variation in the z-direction. The change in mode of 

operation has a great influence on the operating frequency. The 

resonant frequency of the TEOls mode in Fig. 4.9 is 4.85 GHz, whereas 
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the mode TE01,1+6 in the same resonator has a resonant frequency of 

Fig. 4.12 Field distribution, L1 = 0 
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Fig. 4.13 Field distribution, L1 = 0 and L2 = 0 

Fig. 4.14 Field distribution, isolated DR, mode TE01,1+6 
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4 . 6  The Itoh and Rudokas Model 

Instead of using the idealized waveguide with PMC walls like in the 

Cohn model, Itoh and Rudokas [13] start with the more realistic die- 

lectric rod waveguide, such as the one described in Ch. 3. Therefore, 

the continuity of both the electric and the magnetic fields tangential 

to the interface between regions 6  and 4 is ensured. As shown in Ch. 3, 

the requirement for the continuity of fields in the dielectric rod wave- 

guide leads to the following eigenvalue equation for the TE modes: on 

where the argument k a is given by 
P2 

and where region 6  denotes the inside of the rod, while region 4  denotes 

the outside of the rod as in Fig. 4 . 6 .  The number k a, which satisfies 
P 1 

(4.95), is called the eigenvalue of the TE mode. For the PMC hollow on 
waveguide, the eigenvalue of the TEOl mode was denoted xO1, its value 

being 2.4048. Here, the eigenvalue k a of the dielectric rod waveguide 
P 1 

depends on the rod radius, frequency, and the dielectric constant e 
r' 

Figure 4.15 shows the eigenvalue as a function of the parameter k a, 
0 

where k is the free-space propagation constant and a is the radius of 0 
the rod. When the eigenvalue k a is known, the propagation constant of 

P 1 
the dielectric rod waveguide is computed from: 

The middle part of the Itoh and Rudokas model consists of a die- 

lectric rod waveguide. In Fig. 4 . 6 ,  this part is comprised of regions 6  

and 4. The PEC walls are placed at z = -L, and z = L + L2. Further- 

more, it is postulated that the field in corner regions 3 and 5 is zero 

everywhere. The fields in regions 1 and 2 should be selected so that 

the Maxwell equations, the boundary conditions, and the continuity 

between the regions are maintained. All these requirements are satis- 

fied by choosing the followig electric fields in various regions: 
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d cos 2 
.----2-- J (k p) sinh al(z + L1) Edl = Eo sinhrrlL1 1 pl 

Q 
cos -2 

E = J (k p )  sinh a 2 ( z  - L - L 2 )  
$2 '0 ainh a2L2 1 P l  

Fig. 4.15 Eigenvalue of the dielectric rod waveguide with er = 38 

The radial and the axial components of the corresponding magnetic field 

in various regions may be obtained from the Maxwell equation (4.87) as 

was done in the Cohn model, but it turns out that they are not needed in 
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the approach to be used here. The symbols al, a2, dl, d2 in the above 
equations have the same meaning as defined earlier in the Cohn model. 

The continuity of the electric and magnetic fields leads to the same 

equation (4.74) as in the Cohn model. The difference is that p is now 
determined by (4.97) in terms of the eigenvalue kpla, which must satisfy 

the transcendental equation (4.95), whereas in the Cohn model, p was 
given by (4.61) and the eigenvalue was equal to a constant xO1 = 2.4048. 

The two models differ in their field behavior as a function of 

radial distance. Consider, for example, an open DR with c = 35, 

a = 5 mm, and L = 5 mm. The eigenvalue obtained by the Itoh and Rudokas 

model is k a = 2.8476, while in the Cohn model k a = xO1 = 2.4048. 
P 1 P 

Therefore, in the Cohn model, the HZ field, which is given by the Bessel 

function J (k r), vanishes at p = a (see Fig. 4.7(b)). On the other 
O P  

hand, k a for the Itoh and Rudokas model is larger, so that the H 
P 1 

field turns out to be negative at the resonator surface (as the Bessel 

function has passed the first zero). Outside of the dielectric, the 

radial dependence of H is specified by the monotonically decaying 

function K (k p), as shown in Fig. 4.16. 
0 ~2 
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Fig. 4.16 Hz field variation vs. radial distance for 
Itoh and Rudokas model 
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4.7 Numerical Solution of the Pair of Transcendental Eauations 

Equations (4.95) and (4.74) are both transcendental in nature, the 

former involving ordinary and modified Bessel functions, and the latter 

involving ordinary and hyperbolic tangent functions. At first glance, 

it appears that a mainframe computer may be required in order to obtain 

numerical answers. Fortunately, the use of a large computer can be 

avoided. Two such approaches will be described here: an approximate 

procedure, which requires only a programmable pocket calculator, and 

another more accurate procedure, which is suitable for programming in 

BASIC language of a typical personal computer. 

A simple strategy for obtaining numerical answers to a similar 

system of transcendental equations has been outlined by Iveland [14]. 

His approach may be utilized for the DR of circular shape, although he 

originally analyzed a DR of rectangular, rather than circular, shape. 

Iveland started his analysis by assuming a value for the operating 

frequency, and then he was able to substitute the numerical values in 

the required formulas one after another, ending with a value for the 

resonator length L. If L does not come out equal to the physical length 

of the resonator in question, the assumed value of the frequency must be 

corrected (increased or decreased), and a new value of L must be 

computed. Since the small changes in frequency produce almost directly 

proportional changes in the computed value of L, one can find the proper 

frequency after only a few iterations. 

The procedure may be implemented on a pocket calculator if a 

reasonable approximation is found for the Bessel functions appearing in 

(4.95). Such an approximation is described in [15]. First, for the 

assumed value of frequency, an auxiliary constant yo is computed: 

Then, an approximate eigenvalue is obtained as follows: 

The attenuation constants in regions 1 and 2 are 
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The propagation constant common to both region 6 and region 4 is 

Finally, the resonator length is 

I, = (tan-IF coth alLd + tan-'k coth a2L2]] (4.107) 

In order to get a better feel for the error involved in the above 

computational procedure, we will apply it to a practical situation. Maj 

and Modelski (111 report on a measurement of a DR in an environment such 

as shown in Fig. 4.6. The measured data are as follows: 

er6 = 34.19 , erl = 9,6 , cr2 = 1 , f = 4.348 GHz , 

When these data (except L) are substituted in the above equations 

with f = 4.348 GHz taken as the input frequency, the computed result 

comes out to be L = 7.18 mm (instead of the desired result, 7.48 mm). 

In order to obtain a larger value of L, the input frequency must be 

decreased. After only two more iterations, the following is obtained: 

The error in frequency is -1.8 %. Comparison with other measured 

results of the shielded DR shows typical errors being smaller than 2 % 

[15]. However, for an isolated DR the error of this procedure is much 

larger. For example, the isolated DR taken from reference [5] is 

The measured resonant frequency was 4.85 GHz.  Substituted into the same 
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set of equations, this value gives too large result for L (5.6 mm 

instead of 4.6 mm). After two more iterations, one obtains L = 4.612 mm 

for f = 5.14 GHz. Thus, the error in frequency is +5.8 %. 

Another approach for simultaneously solving (4.74) and (4.95), which 

is suitable for solution on a personal computer, is the following. For 

the TEOl6 resonance, the ratio of Bessel functions appearing in (4.95) 

has a zero at xo = 2.4048 and a pole at xl = 3.8317. The suitable 

approximation is, then, 

The coefficients an can be obtained by fitting the above equation to the 

tabulated values of Bessel functions [3]. The values used here are 

The error of the above formula is smaller than 0.04 % in the range 

Xo < X < 3.3. 
The ratio of modified Bessel functions which appear in the right- 

hand side of (4.95) may be approximated by the following power series: 

The coefficients a are given below n 

The error of this formula is smaller than 0.04 % for x > 0.7. 
Using (4.108) and (4.109) it is possible to circumvent the drawback 

of the personal computer, namely, the lack of computer library in BASIC 

language, which would contain the higher mathematical functions, such as 

BesSel functions. 

The two transcendental equations are then simultaneously solved as 

follows. For simplicity of notation, denote the two implicit functions 

by f(x,y) and g(x,y), where x and y are two independent variables. We 

are looking for a point (x,y) at which both 
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f(x,y) = 0 and g(x,y) = 0 (4.110) 

In the vicinity of the solution, f and g will be approximated by the 

linear functions: 

When f = 0, (4.111) gives a straight line: 

Similarly, g = 0 results in another straight line: 

The intersection of these two straight lines is at 

and 

Therefore, if the coefficients a, b, c, A, B, C are known, the zero of 

the system of equations (4.110) can be computed by (4.115) and (4.116). 

What remains is to evaluate these coefficients. 

The implicit function f(x,y) can be interpreted as a three- 

dimensional surface over the x,y plane. For a sufficiently small range 

of variables x and y, the surface is approximated by a plane. By evalu- 

ating three points on this plane, the location of the plane is entirely 

specified. This will be done here as follows. 

Denote the starting point by x = x2, y = y2. The corresponding 

value of f is denoted by f2. The next point is chosen as x = x2 + AX, 

y1 = y2. The corresponding value of f is denoted by fl. The third 

point is selected as x = x2 and y3 = y + Ay, and the corresponding 
2 

function is denoted by f3. Hence, the linear coefficients from (4.111) 

are 
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Similar three-point evaluation at the same three points in the x,y plane 

gives the linear coefficients of the function g: 

The search consists of evaluating functions f and g at three close 

points, computing the linear coefficients from (4.117) to (4.122), and 

then moving to the new point given by (4.115) and (4.116). There, the 

whole procedure is repeated again. 

In the case of interest here, the two variables are selected to be 

x = kpla and y = k a 0 
(4.123) 

The argument of the modified Bessel functions is denoted by z :  

z = k  a (4.124) 
P2 

The two implicit functions are then defined in accordance with (4.95) 

and (4.74) as 

and 
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The search is very rapid, and only three or four iterations are typi- 

cally required for an accuracy of 

When the starting point is far from the correct solution, functions 

f and g may depart from the linear model; the first step computed by 

(4.115) and (4.116) may be too large, and the point may fall outside of 

the feasible range. This situation may be recognized by an attempt to 

evaluate the square root of a negative number in (4.96). If this 

happens, the search algorithm reduces the step by half and the procedure 

is repeated. 

For isolated resonators, the Itoh and Rudokas system of transcen- 

dental equations gives a frequency which is too high by about 5 %. For 

closer and closer spacing of the two metal walls, the solution becomes 

more and more accurate, and when L and L both tend toward zero, the 1 2 
system of equations becomes exact. 
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4.8 Variational Im~rovement of the Itoh and Rudokas Model 

When the field in some resonant cavity is known only approximately, 

the best way to compute the resonant frequency of this cavity is through 

the use of some variational formula. All the variational expressions 

contain some ratio of energies stored inside the resonator volume. The 

advantage of the variational formulas is that the small inaccuracies in 

the field distribution have a negligible effect on the resulting value 

of frequency . 
Variational formulas for the resonant frequency can be classified to 

be of the E-type, H-type, or mixed type. Since we have simple 

expressions (4.98) to (4.101) for the electric field of the Itoh and 

Rudokas model, we will use the E-field variational formula. 

The electric field in regions 1, 2, 4, and 6 satisfies the Helmholtz 

wave equation, so that the tangential components of the field are con- 

tinuous over the interfaces between individual regions. The magnetic 

field in these regions can be obtained by using (4.87), and it also has 

continuous tangential component over each interface, as long as k and 
P 1 

kp2 satisfy the eigenvalue equation (4.95). 

In corner regions 3 and 5, the original Itoh and Rudokas model 

assumes both the electric and the magnetic field to be equal to zero. 

This assumption is convenient in simplifying the mathematical procedure 

for computing the resonant frequency. Unfortunately, such an assumption 

creates a discontinuity of the electric as well as magnetic fields at 

the interfaces between the corner regions and inner regions. 

An improvement of the Itoh and Rudokas model can be achieved by 

choosing the electric field in the corner regions according to (4.83) 

and (4.84), as it was done in Sec. 4.5. Then, the electric field in 

regions 3 and 5 becomes continuous over the interfaces with inner 

regions. Unfortunately, (4.83) and (4.84) do not satisfy the Helmholtz 

wave equation, so that a self-consistent magnetic field cannot be 

constructed from these two equations. For this reason, the magnetic 

field in regions 3 and 5 is simply left to be zero. However, to justify 

the sudden jump of the tangential magnetic field from zero (e.g. in 

region 3) to a finite value in the neighboring regions (e.g. regions 1 

and 4), surface electric currents J are added on the interfaces, as 

indicated in Fig. 4.17. 

The variational formula for computing the resonant frequency of the 

model in Fig. 4.17 will be derived by using Rumsey's reaction concept in 
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' I  
I 
1 .  

z= -L1 

Fig. 4.17 

a manner described by Harrington [9, Sec. 7.71. The E-field variational 

formula is obtained from the self-reaction 

The source J inside volume V of the resonant cavity is obtained from [9, 

eq. 7.681: 

On the interfaces where a jump in the tangential magnetic field 

occurs, the electric surface currents have the value 

where is the unit vector, normal to the interface, pointing out of 
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the inner region under consideration. For example, when the magnetic 

field in region 1 is considered on the interface with region 3, the unit 

vector points radially outwards from region 1 (A = 2). The magnetic 

field in (4.129) is next expressed in terms of the electric field: 

J = -  l ~ x E x A  
-s j w p  

Substituting (4.128) and (4.130) in (4.127), one obtains 

Using the vector identity 

A * B x C = B - C x e  (4.132) 

for the last integral, the following variational formula is obtained: 

The surface integral in the numerator of (4.133) has been originated 

by the surface electric currents J . Therefore, it is necessary to 

evaluate this integral only on those interfaces in Fig. 4.17, on which 

J exists. 

The evaluation of integrals in (4.133) is performed separately for 

each of the regions. All of the integrals can be evaluated analytically 

using formulas (4.41) to (4.44). Considerable savings can be achieved 

by realizing that for regions 1, 2, 4, and 6, the volume integral in the 

numerator is identical with the volume integral in the denominator, 

except for the multiplicative constant. Namely, for isotropic die- 

lectric materials, the Helmholtz wave equation is 19, p. 371 
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where the propagation constant in the medium is 

2 2 k = w p c c  O O O r  (4.135) 

Note that the angular frequency wo signifies the frequency of the origi- 

nal Itoh and Rudokas model, and not the corrected resonant frequency w 

obtained by the variational formula. The individual volume integrals in 

the denominator are next denoted by Di (subscript i stands for the 

region i = 1 to 6): 

Similarly, the individual volume integrals in the numerator of (4.133) 

are denoted Ni: 

From (4.134) it follows that Ni is related to Di as follows: 

2 N = wODi for i = 1,2,4,6 i (4.138) 

This enables considerable savings in the analytical as well as the 

computational effort. 

After cancelling a common factor, 

the results of integration take the following form: 
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(4.142) 

(4.143) 

11s ul ant 

functions: 

d u denote the result of integration of hyperbolic 2 

sinh(2aiLi) 
u = 
i 

for i = 1,2 (4.144) 
2aiLi 

and B is the result of integration of the trigonometric functions: 

sin 4 + sin 4 
8 = 

2 

41 + 42 

The integration of Bessel functions results in the following: 

Corner regions 3 and 5 do not satisfy (4.134); for these regions, 

the volume integration in the numerator must be performed by evaluating 

the double curl operation as it stands. Nevertheless, the analytical 

evaluation of these integrals is straightforward, and the results are: 

2 5 
COS 
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COS 2 !2 
D = C  ~ ~ ( u ~  - 1) pr(kP2a) 

r5 sinh a2L2 

2 
a; + k , cos 2 2 

N = -  (4.151) 
5 

The surface integration terms are denoted by NH and NV (subscripts H 

and V signifying the horizontal and the vertical interfaces, 

respectively, in Fig. 4.17): 

+ [cos'i]2 sinh f2L* L2("2 

(sin dl + sin d2) Pr(kp2a) 

Both N and NV, as well as N3 and N5, are real negative numbers, thus 
H 

reducing the resonant frequency from the value wo evaluated by the 

original Itoh and Rudokas model to a lower, corrected value w computed r' 
as follows: 

The corrected values of the resonant frequency are much closer to 

the published measured resonant frequencies of shielded resonators 

reported by various authors [10,11,12]. Typical errors are listed in 

Table 4.5 where the results obtained by (4.154) are compared with the 

measured data. 
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Table 4.5 COMPARISON OF PERTURBATIONAL AND VARIATIONAL 
METHODS WITH PUBLISHED DATA 

Case Measured Perturbational Result Variational Result 

f (GHz) f (GHz) Error f (GHz) Error 

1 7.94 7.821 -1.49% 7.836 +l. 31% 

2 4.348 4.286 -1.42% 4.297 -1.17% 

3 2.131 2.126 -0.23% 2.130 -0.03% 

4 4.85 4.855 -0.10% 4.893 +O. 88% 

5 9.11 9.033 -0.84% 9.110 +O . 00% 

Table 4.6 provides the detailed dimensions and dielectric constants for 

each of the five cases listed in Table 4.5. 

Table 4.6 DATA ON PUBLISHED DR CASES 

Computed f(GHz) 

Measured f(GHz) 

Reference 

The computer program, named DRESV2, evaluates the approximate 

resonant frequency by variational formula (4.154). The instructions for 

use and the listing of the program, written in BASIC, are given in 

Appendix 4.B. Besides the resonant frequency, the program also 

evaluates the Q factor due to resistive losses in the two shielding 

plates. 
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4.9 Mechanical Tunine of a DR Mounted on Microstri~ 

In many applications, dielectric resonator is mounted on a micro- 

strip substrate, and the tuning of the resonant frequency is provided by 

a tuning screw coming through the top cover. This situation is shown in 

Fig. 4.18. 

Fig. 4.18 Mechanical tuning of a dielectric resonator 

The operation of the tuning mechanism can be explained by the 

perturbational principle (4.93). When a metal -wall of any resonant 

cavity is moved inward, the change in resonant frequency is proportional 

to the difference in stored magnetic and electric energies within the 

displaced volume AV. In particular, if the stored magnetic energy in 

the volume AV is larger than the stored electric energy in the volume 

AV, then the resonant frequency will increase after the wall has moved 

inward. 

The resonant system in Fig. 4.18 possesses a rotational symmetry. 

Thus, the electric field of the mode TEOl6 has only the &component. 

This E field is oriented tangentially to the surface of the metal plate 
4 

at the end of the tuning screw. In the immediate vicinity of the plate, 

the boundary condition requires the tangential electric field to be 
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zero. Therefore, for the TEOls mode, the stored electric energy in the 

vicinity of the metal plate is zero. When the screw is lowered, the 

only displaced stored energy is the magnetic energy, and the resonant 

frequency must increase in accordance with (4.93). 

In designing the tuning mechanism, it is of interest to determine 

the change of frequency as a function of the distance L2. Obviously, 

the smaller L2, the larger is the increase in resonant frequency that 

can be obtained. However, bringing the metal surface of the tuning 

screw close to the resonator will produce appreciable surface currents, 

which will, in turn, reduce the Q factor of the resonator. By knowing 

how much the overall Q will deteriorate when frequency is tuned by a 

given amount, it becomes possible to select materials and their di- 

mensions in such a way that an optimum design is achieved. 

Suppose we want to analyze the tuning mechanism from Fig. 4.18 with 

the aid of the program DRESV2. We know that the program is based on a 

slightly different configuration (see Fig. 4.17) in which the metal 

plate, located at the distance L from the resonator, is of infinite 2 
extent. On the other hand, the plate at the end of the tuning screw has 

a diameter which is not larger than that of the dielectric resonator. 

Thus, we realize that by using DRESV2, we have in fact assumed the 

electromagnetic field between the tuning plate and the actual metal 

cover of the shielding box to be equal to zero. We hope this assumption 

does not introduce significant errors in our results. 

The dielectric resonator to be analyzed is Murata-Erie model 

DRD077UC034B, which is made of dielectric ar = 37.7; its radius is 

a = 3.85 mm and its length is L = 3.41 mm. The resonator is placed on a 

dielectric substrate arl = 2.54 of thickness L1 = 0.254 mm (10 mil). 

The metal plate below the substrate is made of aluminum. When these 

data are entered in the program, and when the distance L2 is varied from 

0.001 mm (to avoid entering a zero) to about 6 mm, the frequency and the 

Q factor computed by the program are such as shown in Fig. 4.19. 

Observing the frequency as a function of distance L2, we conclude 

that increasing the distance beyond 6 mm does not affect the frequency 

in any appreciable way. The lowest frequency is about 7.56 GHz. When 

the distance L is reduced to less than about 2 mm, frequency starts 2 
increasing rapidly. When the tuning plate is touching the resonator, 

the resonant frequency reaches 9.08 GHz. 
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Fig. 4.19 Resonant frequency and Q factor versus tuning distance L2 

At the same time as frequency is increased, the Q factor is lowered. 

The program DRESV2 computes the Q factor by using the incremental 

frequency rule, which was explained in Sec. 2.7. The Q factor computed 

by this method takes into account the conductor losses in the two metal 

plates. Hence, it is denoted by Qc. When the tuning plate is at 
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L = 6 mm, a high value Qc = 8149 is obtained. When the tuning plate is 
2 
touching the resonator, Qc drops to 3265. 

It is now possible to select the trlning range in which the resonator 

operates in a satisfactory manner. Suppose we do not allow Q to drop 

by more than 25 % from its maximum value. Thus, the lowest permissible 

Qc in Fig. 4.19 is 6111. This occurs at L2 = 1.42 mm, which corresponds 

to frequency f = 7.82 GHz. Therefore, the acceptable tuning range is 

from 7.56 to 7.82 GHz, which constitutes a relative change of 3.4 %. 

Typically, the tuning ranges achieved in practice are between 1 and 5 %. 
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Appendix 4.A PROGRAM DRESP 

Dimensions of the Resonator 

The dielectric resonator is situated between two parallel plates of 

infinite extent as shown in Fig. 4.6. The radius of the resonator is a 

and its length is L. The material of the resonator is cr. L1 and L2 

are distances to the shielding plates. When both of these distances are 

about three times larger than the radius a, the resonant frequency of 

the resonator is very nearly the same as if the resonator were located 

in free space. 

Example: E = 38, a = 5.25 mm, L = 4.6 mm 

The resonator dimensions and dielectric constants are entered 

through the data lines 90 and 100. If one lists lines 90 and 100, one 

finds the following: 

90 DATA 38, 5.25, 4.6 

100 DATA 1, 15, 1, 15 

For a different resonator, one has to edit these two lines 

appropriately. 

The dielectric constants of the outer regions 3, 4, and 5 are 

defined by the program lines 1530 to 1550: 

1560 ER(3) = ER(1) 

1570 ER(4) = 1 

1580 ER(5) = ER(2) 

These statements make the dielectric constants of regions 3 and 1 equal 

to each other, and likewise for regions 5 and 2. The dielectric 

constant in region 4 is set to unity (for air dielectric). For some 

special applications, the user may want to change these three statements 

according to his needs. 

Com~utation of the Resonant Freauency 

The perturbational numerical procedure selected here is performed in 

two steps. First, an estimate of resonant frequency is made on the 

basis of the cylindrical waveguide model with perfect magnetic wall. 

Then the wall is removed, and the field outside the resonator is made 

continuous. The resonant frequency is afterwards computed from the 

total stored electric and magnetic energies. The computed results have 
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been checked against the method of moments solution for isolated die- 

lectric resonators, and they were found to agree within one percent. 

For shielded dielectric resonators, the agreement is not so good. 

To compute the resonant frequency of the resonator from the previous 

example, the procedure is as follows: 

- Put the DOS disk in drive A and the dielectric resonator program in 
drive B. 

- Switch the computer on, enter the date and the time, and wait for 
the prompt A>. Then, type 

GRAPHICS (return) 

BASICA (return) 

- When the prompt OK is received, type 
LOAD "B:DRESPV (return) 

- The computer answers with OK, then type 
RUN (key F2) 

The screen will display the resonator dimensions, and then it will 

solve the transcendental equation for the Cohn model 14) in the first 

step of the computation. Each time the search increment is reduced 10 

times, another digit of accuracy is achieved, and the screen display 

looks as follows: 

counting . . .  1 

counting ... 2 

counting . . .  3 

counting . . .  4 
counting . . .  5 

Cohn's model 

freq(Cohn) = 4.600455 GHz 

perturbational result 

freq(pert) = 4.855179 GHz 

want to plot the field? (y or n) 

Plottine the field distribution 

If the plot is not wanted, one types letter n and this part of the 

program is skipped. Assume that we want the field plotted, then we type 

letter y and hit the return key. The prompt comes: 

how many points in each region? (nl, n, n2) 

About twenty points or less is appropriate; here, we type 

10, 10, 10 
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and hit the return key. The graphical display of the field will appear 

on the screen as shown in Fig. 4.20. The two vertical lines in the 

center of the figure indicate the left and the right faces of the 

dielectric resonator. The vertical lines on the left and right edges of 

the figure indicate the position of the metal plates. The horizontal 

line in the center is the abscissa, indicating zero field amplitude. 

Fig. 4.20 Field distribution in an isolated DR, 
solid line: E/ and HZ, broken line: Hr 

The solid line is proportional to the H and E components of the 
6 

field, and the broken line is proportional to the H component. It can 

be seen that the HZ field is maximum inside the resonator, while the Hr 

is zero at the center of the resonator. Both fields decay exponentially 

outside the resonator. 

The time and the date appear at the bottom of the diagram. The 

program is now in the WAIT position, for the case where one wants to 

have the printout of the diagram. This can be accomplished by pressing 

the PRTSC key. When the print is finished, press 

CTRL BREAK 
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To get in the normal letter mode, type 

SCREEN 2 (return) 

F10 (function key) (return) 

KEY ON (return) 

Table of the Enerev Distribution 

In the perturbational procedure, the stored electric and magnetic 

energies are computed for each of the six regions shown in Fig. 4.6. 

The relative distributions of the energy can be useful in deciding how 

to couple to the resonator. In order to print the table, proceed as 

follows : 

RUN (key F2) 

After the previously decribed results appear on the screen, the last 

line is 

want to plot the field? (y or n) 

This time, we type n and hit the return key. The next question appears: 

want the energy distribution table? (y or n) 

Type y, return, and the following appears 

located within the 

magnetic energy is 

to couple strongly 

coupling mechanism 

the magnetic field 

energy). 

It can be seen that 97.74 % of the stored electric energy is 

resonator (region 6), and only 62.29 % of the 

stored within the resonator. Therefore, the best way 

to the resonator would be to place some magnetic 

in region 1 or 2 because in each of these two regions 

is relatively strong (13 % of the total magnetic 

The example computed above was for the TEOl6 mode. The program can 

also compute the TE 01,e+6 modes. The integer P is normally set to zero. 

This information is stored in line 110 of the program: 

110 MODE = 0 

For instance, if we wish to compute the resonant frequency of the 
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resonator with the same dimensions as before, but operating in the 

TE01,1+6 mode, we have to make LMODE = 1. Running the program for this 

mode, we get: 

freq(Cohn) = 7.684845 GHz 
freq(pert) = 8.19373 GHz 
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10 REM ************** file dresp .................................. 
20 REM dielectric resonator analysis by perturbational method 
30 REM based on Cohn's model 
40 REM copyright kajfez, november 1984 
50 DIM ER(6),NUM(6),DEN(6) 
60 DIM WW(3),DWE(3),DWM(3) 
70 P01=2.40483 
80 P012=POl*POl 
90 DATA 38,5.25,4.6 
100 DATA 1,15,1,15 
110 LMODE=O 
120 ACC=5 
130 PI=3.141593 
140 READ ER(6),A,L 
150 READ ER(l),Ll,ER(2),L2 
160 PRINT "input data" 
170 PRINT "er=";ER(6);"a=";A;"k";L;"MODE=";MODE 
180 PRINT "erl=";ER(l);"Ll=";Ll 
190 PRINT "er2=";ER(2);"L2=";L2 
200 PRINT "accuracy of solving transc. eq. : ";ACC+l;" digits" 
210 FOLD=l50*POl/(PI*A*SQR(ER(6))) 
220 FFNEW=FOLD*1.001 
230 GOSUB 560 
240 DF=FOLD*.l 
250 REM**************** solving the transcendental equation ***** 
260 FF'NEW=FOLD+DF 
270 FUNCOLD=FUNC 
280 GOSUB 560 
290 SIGN=FUNC*FUNCOLD 
300 FOLD=FFNEW 
310 NTRIAkNTRIAL+l 
320 IF SIGN<O GOT0 350 
330 IF NTRIAL > 50 THEN GOT0 390 
340 GOT0 260 
350 DF=-DW.1 
360 COUNT=COUNT+l 
370 PRINT "counting . . .  ";COUNT 
380 IF COUNT<ACC GOT0 260 
390 SHl=(Xl-XI1)/2 
400 SH2=(X2-X12)/2 
410 ETA=120*PI 
420 REM component amplitudes 
430 HZlO=COS(THl)/SHl 
440 HRlO=-ALlA*HZlO/POl 
450 HRR=BA/POl 
460 HZ20=-COS(TH2)/SH2 
470 HR20=-AL2A*HZ2O/POl 
480 GOSUB 1550 
490 PRINT "want to plot the field? (y or n)" 
500 INPUT A$ 
510 IF A$="yW THEN GOSUB 810 
520 PRINT "want the energy distribution table? (y or n) 
530 INPUT A$ 
540 IF A$="y" THEN GOSUB 2010 
550 END 
560 REM *************** transcendental function ****************** 
570 KOA=PI*FFNEW*A/150 
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580 KOA2=KOA*KOA 
590 RADIC=P012-KOA2*ER(l) 
600 ALlA=SQR(RADIC) 
610 RADI=POl2-KOA2*ER(2) 
620 ALZA=SQR(RADI) 
630 RADA=KOA2*ER(6)-PO12 
640 BA=SQR(RADA) 
650 ALlLl=ALlA*Ll/A 
660 AL2L2=AL2A*L2/A 
670 Xl=EXP(ALlLl) 
680 XIl=l/Xl 
690 X2=EXP(AL2L2) 
700 XI2=1/X2 
710 CTl=(Xl+XIl)/(Xl-XI1) 
720 CT2=(X2+XI2)/(X2-X12) 
730 ARGl=ALlA*CTl/BA 
740 ARG2=AL2A*CT2/BA 
750 THl=ATN(ARGl) 
760 IF THl < 0 THEN PRINT "negative length thl" 
770 TH2=ATN(ARG2) 
780 IF TH2 < 0 THEN PRINT "negative length th2" 
790 FUNC=(THl+TH2+LMODE*PI)/BA-L/A 
800 RETURN 
810 REM*************** computation of field distribution ******* 
820 PRINT "how many points in each region? (nl,n,n2) 
830 INPUT Nl,N,N2 
840 NTOT=Nl+N+N2+1 
850 DIM ZZ(NTOT),HZ(NTOT),HR(NTOT) 
860 REM region 1 
870 DZ=Ll/Nl 
880 Z=-L1 
890 FOR Il=l TO N1 
900 AEXl=ALlA*(Z+Ll)/A 
910 XP=EXP(AEXl) 
920 XIP=l/XP 
930 SHAl=(XP-XIP)/2 
940 CHAl=(XP+XIP)/2 
950 ZZ(Il)=Z 
960 HZ(Il)=HZlO*SHAl 
970 HR(Il)=HRlO*CHAl 
980 Z=Z+DZ 
990 NEXT I1 
1000 REM region inside 
1010 DZ=L/N 
1020 FOR I=N1+1 TO Nl+N 
1030 ANG=BA*Z/A-TH1 
1040 ZZ(I)=Z 
1050 HZ(I)=COS(ANG) 
1060 HR(I)=HRR*SIN(ANG) 
1070 Z=Z+DZ 
1080 NEXT I 
1090 REM region 2 
1100 DZ=L2/N2 
1110 IF HZ(Nl+N) < 0 THEN HZ20=-HZ20 
1120 IF HR(Nl+N) < 0 THEN HR20=-HR20 
1130 FOR IP=Nl+N+l TO NTOT 
1140 AEX2=AL2A*(Z-L2-L)/A 
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1150 SP=EXP(AEX2) 
1160 SPI=l/SP 
1170 SHA2=(SP-SPI)/2 
1180 CHA2=(SP+SPI)/2 
1190 ZZ(I2)=Z 
1200 HZ(I2)=HZ20*SHA2 
1210 HR(I2)=HR20*CHA2 
1220 Z=Z+DZ 
1230 NEXT I2 
1240 REM **************** plotting the field distribution ************ 
1250 CLS 
1260 KEY OFF 
1270 SCREEN 1 
1280 MCATE 25,l 
1290 PRINT TIME$+" "+DATE$ 
1300 LINE (0,O)-(319,199),,B 
1310 W=99 
1320 VW=199 
1330 HH=319 
1340 LENGTH=Ll+L+L2 
1350 SCALE=319/LENGTH 
1360 LlH=Ll*SCALE 
1370 LLH=(Ll+L)*SCALE 
1380 LINE (LlH,O)-(LLH,VW),,B 
1390 LINE (HH,W)-(0,W) 
1400 FOR 1=2 TO NTOT 
1410 Zk(ZZ(I)+Ll)*SCALE 
1420 +kW*(l-HZ(1)) 
1430 LINE -(ZL,HHL) 
1440 NEXT I 
1450 VAM=. 5 
1460 HHkW*(l-VAM*HR(l) ) 
1470 PSET (0,HHL) 
1480 FOR 1=2 TO NTOT 
1490 ZL=(ZZ(I)+Ll)*SCALE 
1500 HHkW*(l-VAM*HR(I)) 
1510 LINE -(ZL,HHL),,,&HCCCC 
1520 NEXT I 
1530 WAIT 1,O '(for printer), then press ctrl break to get out 
1540 RETURN 
1550 REM ************** perturbational formula ......................... 
1560 ER(3)=ER(l) 
1570 ER(4)=1 
1580 ER(5)=ER(2) 
1590 KC4A2=KOA2*(ER(6)-ER(4))-P012 
1600 KC4A=SQR(KC4A2) 
1610 HZ102=HZlO*HZlO 
1620 HZ202=HZ20*HZ20 
1630 KOB=1/(1+(.4832-.0511/KC4A)/KC4A) 
1640 IF KC4A < .8 THEN PRINT "Bessel approximation not accurate ! "  
1650 KOB2=KOB*KOB 
1660 PRX=KOB2+2*KOB/KC4A-1 
1670 QRX=l-KOB2 
1680 SIFl=SIN(TH1*2) 
1690 SIF2=SIN(TH2*2) 
1700 THET=(SIFl+SIF2)*.5/(THl+TH2+LMODE*PI) 
1710 ARG1=2*ALlLl 
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1720 Ml=EXP(ARGl) 
1730 XHIl=l/Ml 
1740 SIGl=(XHl-XHI1)*.25/ALlLl 
1750 ARG2=2*AL2L2 
1760 XH2=EXP(ARG2) 
1770 XHI2=1/XH2 
1780 SIG2=(XH2-M12)*.25/AL2L2 
1790 A2=A*A 
1800 WW(l)=ER(l)*HZ102*A2*Ll*(SIGl-1) 
1810 WW(2)=ER(2)*HZ202*A2*L2*(SIG2-1) 
1820 WW(3)=ER(6)*A2*L*(l+THET) 
1830 DWE(l)=ER(3)*HZ102*A2*Ll*PRX*(SIGl-l) 
1840 DWE(2)=ER(4)*A2*L*PRX*(l+THET) 
1850 DWE(3)=ER(5)*HZ202*A2*L2*PRX*(SIG2-1) 
1860 DWM(l)=(RADIC/KOA2)*HZ102*A2*L1*PRX*(SIGl+l) 
1870 DWM(2)=(RADA/KOA2)*A2*L*PRX*(l-THET) 
1880 DWM(3)=(RADI/KoA2)*HZ202*A2*L2*PRX*(SIG2+1) 
1890 FOR I=1 TO 3 
1900 SWW=SWW+WW(I) 
1910 SDWE=SDWE+DWE(I) 
1920 SDWM=SDWM+DWM(I) 
1930 NEXT I 
1940 PERT=(SDWE-SDWM)*.S/SWW 
1950 PERFRE=FOLD*(l-PERT) 
1960 PRINT "Cohn's model" 
1970 PRINT "freq(Cohn)=",FOLD," GHz" 
1980 PRINT "perturbational result" 
1990 PRINT "freq(pert)=",PERFRE,"GHz" 
2000 RETURN 
2010 REM ************** ENERGY DISTRIBUTION TABLE ...................... 
2020 DIM WE(6),WM(6) 
2030 PRINT " j eps(j) we(j)% wrn(j)%" 
2040 PRINT 
2050 SUME=SWW+SDWE 
2060 SUMM=SWW+SDWM 
2070 WE(l)=WW(l)/SUME 
2080 WE(2)=WW(2)/SUME 
2090 WE(3)=DWE(l)/SUME 
2100 UE(&)=DWE(P)/SUME 
2110 WE(S)=DWE(3)/SUME 
2120 WE(6)=WW(3)/SUME 
2130 TEM=(RADIC/KOA2)*(SIGl+l)+(P012/KOA2)*(SIGl-1) 
2140 WM(l)=TEM*HZ102*A2*Ll/SUMM 
2150 TEM=(RADA/KOA2)*(1-THET)+(P012/KOA2)*(1+THET) 
2160 WM(6)=TEM*L*A2/SUMM 
2170 TEk(RADI/KOA2)*(SIG2+1)+(P012/KOA2)*(SIG2-1) 
2180 WM(2)=TEM*HZ202*L2*A2/SUMM 
2190 WM(3)=DWM(l)/SUMM 
2200 WM(4)=DWM(2)/SUMM 
2210 WM(5)=DWM(3)/SUMM 
2220 FOR J=1 TO 6 
2230 WM(J)=lOO*WM(J) 
2240 WE(J)=lOO*WE(J) 
2250 PRINT USING "#####.##"; J,ER(J),WE(J),WM(J) 
2260 NEXT J 
2270 RETURN 
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Comvutation of Resonant Freauency 

Program DRESV2 computes the resonant frequency of the same resonator 

shown in Fig. 4.6, but the program provides neither a graphical display 

nor a table of energy distribution. It has been observed that, for 

shielded resonators, the accuracy of the results is better than that of 

DRESP . 
The input data are entered through data lines 90 and 100. Line 110 

contains the value of LMODE, as in DRESP. The dielectric constants in 

regions 3, 4, and 5 are entered in lines 140 to 160: 

140 ER(3) = ER(1) 

150 ER(4) = 1 

160 ER(5) = ER(2) 

These lines may be changed if other values of dielectric constants are 

desired. For example, the input data for a dielectric resonator with 

cr6 = 37.6, a = 4.25 mm, h = 3.7 mm, rl = cr2 = 1, L = L = 2.91 mm 1 2  
will be entered in the following way 

90 DATA 37.6, 4.25, 3.7 

100 DATA 1, 2.91, 1, 2.91 

After the command RUN, the following output appears: 

.............................................................. 
dresv2 01-27-1986 15:52:24 

.............................................................. 
input data 
er= 37.6 a= 4.25 I..= 3.7 MODE= 0 
erl= 1 L1= 2.91 
er2= 1 L2= 2.91 
searching for the eigenvalue . . .  
1 koa= .7214197 eigx= 
2 koa= .565719 e igx= 
3 koa= .5877552 eigx= 
4 koa= .5887659 eigx= 
5 koa= .5887722 eigx= 
Itoh & Rudokas model 
freq(I&R)= 6.614539 GHz 
variational result 
freq(var)= 6.1765 GHz 
want the percent error in frequency? (y or n) 

In the steps 1 to 5 (fewer steps may appear in other examples) the 

program searches for the solution of the transcendental system of 

equations of the Itoh and Rudokas model [13]. Afterwards, the 
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variational procedure is used to compute the frequency. When the exact 

value of frequency is known for a particular resonator, it is possible 

to check the percent error of the result computed by DRESV2. Suppose we 

have measured the resonant frequency of this resonator to be 6.39 G H z .  

Then, we type 

Y 

The prompt comes: 

enter the exact frequency in G H z  

After entering the value 6.39, the answer appears: 

-3.34 % 

When L and L2 tend to zero, the computed frequency approaches the 
1 

exact value. Such a result may be useful for predicting the resonant 

frequency of the resonator between two metal planes (Courtney holder). 

For example, we enter the following data: 

90 DATA 63.7, 14.28, 11.252 

100 DATA I., 0.0001, I., 0.0001 

The result is 2.130866 GHz. The value given by Courtney 1121 is 

2.131 GHz. Therefore, the computed value agrees within -0.01 % with the 

measured value. 

w r  

The program computes the Q factor due to losses in conducting plates 

(located at the extreme left and the extreme right sides in Fig. 4.6). 

The computation is performed by the "incremental frequency rule," 

described in Sec. 2.7. The application of this rule consists of moving 

the conductor surfaces for the length of one skin depth and computing 

the Q from the change in resonant frequency due to this move. 

The program is ready for computation of Q after the following 

prompt : 

want to compute the Q factor? (y or n) 

After answering y, the next prompt is 

shield: copper, aluminum, brass, or other? (c,a,b, or o) 

Suppose the walls are made of brass. After answering b, the following 

appears : 
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skin depth= 1.616215 microns 
searching for the eigenvalue . . .  
1 koa= .5887721 
2 koa= .5887803 
Itoh & Rudokas model 
freq(I&R)= 6.614631 GHz 
variational result 
freq(var)= 6.176669 GHz 
Q(due to shield losses)= 36384.99 

Therefore, the Q factor due to the losses in two metal walls is about 

36,000. This means that these losses are almost negligible. If the Q 

factor of the dielectric material is 5000, we may compute the overall Q 

of the shielded resonator as follows: 

PRINT 1/(1/5000 + 1/36385) 
The overall Q comes out to be 4395.917. 
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10 REM ************** file dresv2 .................................. 
20 REM dielectric resonator analysis by variational method 
30 REM based on Itoh and Rudokas model 
40 REM q factor computed by the incremental frequency rule 
50 REM copyright Kajfez, january 1986 
60 DIM ER(6),NUM(6),DEN(6) 
70 DIM XX(3),KK(3),ALF(Z),FIH(2),LL(2),FCT(3),GCT(3) 
80 REM lengths should be entered in mm 
90 DATA 37.6.4.25.3.7 
100 DATA 1,2.91,1,2.91 
110 LMODE=O 
120 READ ER(6),A,L 
130 READ ER(l),LL(l),ER(2),LL(2) 
140 ER(3)=ER(l) 
150 ER(4)=1 
160 ER(5)=ER(2) 
170 PRINT .............................................................. 
180 PRINT " dresv2 ";DATE$,TIME$ 
190 PRINT .............................................................. 
200 PRINT "input data" 
210 PRINT "er=";ER(6);"a=";A;"k";L;"LMODE=";LMODE 
220 PRINT "erl=";ER(l);"Ll=";U(l) 
230 PRINT "er2=";ER(2);"L2=";U(2) 
240 PI=3.141593 
250 NQ=O 
260 REM ************** 2-dimensional search for the solution ********* 
270 REM ************** of the transcendental equation **xxx-k* 

280 XX(2)=2.9 
290 IF ER(2)-ER(1)>0 THEN EMAX=ER(2) ELSE EMAX=ER(l) 
300 KMIN=XX(2)/SQR(ER(6)-ER(4)) 
310 KMAX=XX(2)/SQR(EMAX) 
320 KK(2)=(9*KMIN+KMAx)/lO 
330 DXX=.OOOOl 
340 DKK=.00001 
350 ITER=O 
360 PRINT "searching for the eigenvalue ..." 
370 XX(l)=XX(2)+DXX 
380 KK(l)=KK(2) 
390 XX(3)=XX(2) 
400 KK(3)=KK(S)+DKK 
410 FOR ITI=l TO 3 
420 X=XX(ITI) 
430 KO=KK(ITI) 
440 K02=KO*KO 
450 XIT2=X*X 
460 GOSUB 1940 
470 RAzKO~*(ER(~)-ER(~))-XIT~ 
480 IF RA > 0 GOT0 550 
490 STEPX=STEPX/2 
500 STEPK=STEPK/2 
510 XX(2)=XX(2)-STEPX 
520 KK(2)=KK(2)-STEPK 
530 PRINT "step too large, start again with 1/2 smaller step" 
540 GOT0 350 
550 W=SQR(RA) 
560 KC4A=W 
570 GOSUB 2000 
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580 FCT(ITI)=JOB+YY*KOB/X 
590 BA=SQR(KOZ*ER(6)-XIT2) 
600 FOR JIT=l TO 2 
610 ALF(JIT)=SQR(XIT2-KOZ*ER(JIT)) 
620 POW=ALF(JIT)*LL(JIT)/A 
630 IF POD8 GOT0 680 
640 EP=EXP(POW) 
650 EI=l/EP 
660 AGU=(EP+EI)/(EP-EI) 
670 GOT0 690 
680 AGU=l 
690 AGU=AGU*ALF(JIT)/BA 
700 FIH(JIT)=ATN(AGU) 
710 NEXT JIT 
720 GCT(ITI)=FIH(l)+FIH(Z)-BA*L/A+LMODE*PI 
730 NEXT IT1 
740 Ab(FCT(1)-FCT(Z))/DXX 
750 AU=(GCT(l)-GCT(Z))/DKK 
760 BZT(FCT(3)-FCT(Z))/DXX 
770 BUz(GCT(3)-GCT(Z))/DKK 
780 CZTFCT(2)-AL*XX(2)-BL*KK(2) 
790 CU=GCT(2)-AU*XX(2)-BU*KK(2) 
800 DENO=AU*BL-AL*BU 
810 XNEW=(CL*BU-CU*BL)/DENO 
820 KNEW=(CU*AL-CL*AU)/DENO 
830 STEPX=XNEW-XX(2) 
840 STEPK=KNEW-KK(2) 
850 STEP2=STEPXA2+STEPKA2 
860 PRINT ITER+l,"koa=",KK(2),"eigx=",XX(2) 
870 XX(Z)=XNEW 
880 KK(P)=KNEW 
890 IF STEP24E-12 THEN 960 
900 ITER=ITER+l 
910 IF ITER>10 THEN 930 
920 GOT0 370 
930 PRINT "solution not found after 10 iterations" 
940 GOT0 1870 
950 REM if the search is successful, re-evaluate the constants 
960 KOA=KK(2) 
970 FIR=KOA*150/(PI*A) 
980 PRINT "Itoh & Rudokas modeln 
990 PRINT "freq(I&R)=",FIR," GHz" 
1000 EIGX=XX(2) 
1010 KOAZ=KOA*KOA 
1020 EIGZ=EIGX*EIGX 
1030 RADIC=EIG2-KOA2*ER(l) 
1040 ALlA=SQR(RADIC) 
1050 RADkEIG2-KOA2*ER(2) 
1060 ALZA=SQR(RADI) 
1070 RADA=KOA2*ER(6)-EIG2 
1080 BA=SQR(RADA) 
1090 ALlLl=ALlA*LL(l)/A 
1100 AL2L2=AL2A*LL(Z)/A 
1110 IF ALlL1>8 THEN GOT0 1170 
1120 Zl=EXP(ALlLl) 
1130 ZIl=l/Zl 
1140 CTl=(Zl+ZIl)/(Zl-ZI1) 
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1150 SIHl=(Zl-ZI1)*.5 
1160 GOT0 1180 
1170 CT1=1 
1180 IF AL2L2>8 THEN GOT0 1240 
1190 Z2=EXP(AL2L2) 
1200 ZI2=1/Z2 
1210 CT2=(22+212)/(Z2-Z12) 
1220 SIH2=(Z2-ZI2)*.5 
1230 GOT0 1250 
1240 CT2=1 
1250 ARGl=ALlA*CTl/BA 
1260 ARG2=AL2A*CT2/BA 
1270 THl=ATN(ARGl) 
1280 TH2=ATN(ARG2) 
1290 ************** variational formula ........................... 
1300 KC4A2=RADA-KOA2*ER(4) 
1310 KC4A=SQR(KC4A2) 
1320 GOSUB 2000 
1330 X=EIGX 
1340 GOSUB 1940 
1350 JOB2=JOB*JOB 
1360 TRX=JOB2-2*JOB/EIGX+l 
1370 KOBP=KOB*KOB 
1380 PRX=KOB2+2*KOB/KC4A-1 
1390 SIFl=SIN(TH1*2) 
1400 SIF2=SIN(TH2*2) 
1410 THET=(SIFl+SIF2)*.5/(THl+TH2+LMODE*PI) 
1420 C012=A*(COS (TH1)^2)/ALlA 
1430 IF ALlL1>8 THEN 1470 
1440 SECN=ALlLl/(SIHl*SIHl) 
1450 PARMkCTl-SECN 
1460 GOT0 1480 
1470 PARM1=1 
1480 COPAMl=C012*PARMl 
1490 CO~~=A*(COS(TH~)^~)/AL~A 
1500 IF AL2L2 > 8 THEN 1540 
1510 SECN=ALZL2/(SIH2*SIH2) 
1520 PARM24T2-SECN 
1530 GOT0 1550 
1540 PARM2=1 
1550 COPAM2=C022*PARM2 
1560 NUM(l)=ER(l)*COPAMl*TRX 
1570 NUM(2)=ER(2)*COPAM2*TRX 
1580 NUM(3)=- (RADIC+KC4A2)*PRX*COPAMl/KOA2 
1590 NUM(4)=ER(4)*L*(l+THET)*PRX 
1600 NUM(5)=-(RADI+KC4A2)*PRX*COPAM2/KOA2 
1610 NUM(6)=ER(6)*L*(l+THET)*TRX 
1620 DEN(l)=NUM(l) 
1630 DEN(2)=NUM(2) 
1640 DEN(3)=ER(3)*PRX*COPAMl 
1650 DEN(4)=NUM(4) 
1660 DEN(S)=ER(5)*PRX*COPAMP 
1670 DEN(6)=NUM(6) 
1680 DENSUM=O 
1690 SURVER=-BA*A*(SIFl+SIF2)*PRX/KOA2 
1700 SURHOR=X*JOB*Z*(COPAMl+COPAM2)/KOA2 
1710 NUMSUM=SURHOR+SURVER 
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1720 FOR J=1 TO 6 
1730 DENSUM=DENSUM+DEN(J) 
1740 NUMSUM=NUMSUM+NUM(J) 
1750 NEXT J 
1760 VAFXOA=KOA*SQR(NUMSUM/DENSUM) 
1770 VARFRE=VARKOA*15O/(PI*A) 
1780 PRINT "variational result" 
1790 PRINT "freq(var)=",VARFRE," GHz" 
1800 IF NQ=l THEN RETURN 
1810 PRINT "want the percent error in frequency? (y or n)" 
1820 INPUT A$ 
1830 IF A$="y" THEN GOSUB 1880 
1840 PRINT "want to compute the Q factor? (y or n)" 
1850 INPUT B$ 
1860 IF B$="y" THEN GOSUB 2060 
1870 END 
1880 REM ************** percent error .................................. 
1890 PRINT "enter the exact frequency in GHz" 
1900 INPUT EXCFRE 
1910 PERC=lOO*(VARFRE/EXCFRE-1) 
1920 PRINT USING "+##.## -%";PERC 
1930 RETURN 
1940 REM ************* function JOB=JO(X)/Jl(X) ....................... 
1950 XMXO=X-2.4048 
1960 TEM=(.0282*XMXO-.1177)*XMX0+.2571 
1970 TEM=(TEM*XMXO-.716)*XMX0+1.4282 
1980 JOB=TEM*XMXO/(X-3.8317) 
1990 RETURN 
2000 REM ************* function KOB=KO(KC4A)/Kl(KC4A) ***************** 
2010 KI=l/KC4A 
2020 TEM=(.00445*KI-.02679)*KI+.06539 
2030 TEM=(TEM*KI-.11226)*KI+.49907 
2040 KOB=l/(l+TEM*KI) 
2050 RETURN 
2060 REM ************** q factor ................................... 
2070 NQ=l 
2080 FO=VARFRE 
2090 PRINT "shield : copper, aluminum, brass, or other? (c,a,b,or 0)" 
2100 INPUT A$ 
2110 IF A$="cU THEN SIGMA=5.8E+07 
2120 IF A$="a" THEN SIGMA=3.72E+07 
2130 IF A$="bn THEN SIGMA=1.57E+07 
2140 IF A $ X  "on GOT0 2180 
2150 PRINT "enter conductivity in Siemens/meterW 
2160 INPUT SIGMA 
2170 IF SIGMA<.l GOT0 2300 
2180 SKIN=50/(SQR(FO*SIGMA)*PI) 
2190 PRINT "skin depth=",lOOO*SKIN," microns" 
2200 LL(l)=LL(l)-SKIN 
2210.LL(2)=LL(2)-SKIN 
2220 GOSUB 350 
2230 DFzVARFRE-FO 
2240 IF DF/F0<.000001 GOT0 2280 
2250 Q=FO/DF 
2260 PRINT "Q(due to shield losses)=",Q 
2270 RETURN 
2280 PRINT "insignificant losses in the shield, quit" 
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2290 RETURN 
2300 PRINT "conductivity too small, quit" 
2310 RETURN 
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Chapter 5 
RIGOROUS ANALYSIS METHODS 

K12ysdof A. Michalski 

5.1 Introduction 

The simple cylindrical dielectric resonator (DR) models described in 

Ch. 4 are approximate, since they postulate non-Maxwellian fields as the 

point of departure. Although these simple models are useful as aids in 

understanding the principles of operation of DRs, and they may be 

helpful at initial stages of the analysis or design process, they fail 

to provide the high accuracy usually required in present-day microwave 

circuit design. As a result, more sophisticated (and accurate), rigor- 

ous techniques have been recently developed which allow one to take into 

account the influence of the environment on the characteristics of a DR. 

These techniques are rigorous in the sense that the solution is obtained 

in the form of successive approximations converging toward the exact 

solution. Therefore, at least in principle, they allow one to compute 

both the resonant frequency and the field distribution to any desired 

accuracy. 

The purpose of this chapter is twofold: first, to survey the rigor- 

ous techniques available for the analysis of DRs and, second, to present 

selected numerical results obtained by these techniques. We only con- 

sider circular-cylindrical (pillbox or disc) and tubular (ring) reso- 

nators, since these are the shapes most often encountered in practice. 

Also, we direct most of the attention to the analysis of shielded DRs, 

i.e., resonators placed in a parallel-plate waveguide or in a cylindri- 

cal cavity (possibly on a substrate), as illustrated in Fig. 5.1. 

(Since this structure exhibits rotational symmetry with respect to the z 

axis, only one half of the meridian (4 = constant) cross section is 

shown in the figure.) More information on open (isolated) DRs, i.e., 

resonators in infinite, homogeneous space, can be found in Ch. 6. 
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&+ PEC SHIELD 

Fig. 5.1 Dielectric ring resonator on a substrate in a 
cylindrical cavity 

The point of departure in any rigorous analysis of a DR consists of 

Maxwell's 

We assume 

bility pO 

equations, which, in the absence of sources, can be stated as 

V X B =  jwe s E - (5. la) 0  r 

1 x  H = -jwp H 0- (5. lb) 

E . H = O  (5. lc) 

V .  ( sE)=O - r- 
(5. ld) 

here that the region of interest is characterized by permea- 

and permittivity s = cOer, where sr, the relative permittivity 
. - 

(or the relative dielectric constant), can vary with position. Re- 

ferring to the resonator shown in Fig. 5.1, we have er = s in the rs 
substrate, sr = a inside the DR, and sr = 1 in the remaining region 

rd 
bounded by the metallic walls, which are assumed to be perfectly 

electrically conducting (PEC). 
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We should emphasize here, that in a rigorous analysis the DR proper, 

i.e., the high-e dielectric sample of pillbox or ring shape, must be 

considered as an integral part of its environment. Hence, from this 

point of view, the geometry shown in Fig. 5.1 is nothing else but an 

inhomogeneously filled cavity. In this chapter, where there is no 

danger of confusion, we will somewhat loosely apply the term "resonator" 

when referring to both the complete resonant system and the DR proper. 

It is often necessary to determine the resonant frequencies and 

associated field distributions (modes) of the resonator (Fig. 5.1) in 

relation to the permittivity of the DR, its position within the PEC 

enclosure, and other parameters. If we define the operators L and M and 

a vector p,  as [l, Ch.91 

where 1 is the identity tensor of rank two, this problem can be reduced - 
to the determination of the eigenvalues and eigenfunctions of the 

following boundary value problem [I]: 

where S is the PEC cavity boundary with unit normal fi .  We note that the 

first two Maxwell equations are incorporated in (5.3a). It can be shown 

that the operators L and M are self-adjoint with the inner product [I]: 

where V is the region bounded by S. Following the method of moments 

[I], we expand the unknown solution p in a series: 

where aj are constant coefficients to be determined and f are suitable 
-j 

basis functions. We then substitute the series (5.5), truncated to N 

terms, into (5.3a) and take the inner product of this equation with f 
i' 
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i = 1, . . . ,  N. As a result of this step, which is often referred to as 

"testing," we obtain the matrix eigenvalue equation: 

with the elements of the NxN matrices P and m defined, respectively, by - - 

and 

If a complete set of the basis functions f is used, exact solutions to 
j 

the original problem can be obtained, at least in principle, by letting 

N -+ m, and the resonant frequencies of the resonator can be determined 

from the eigenvalues j w .  This procedure, which is referred to as the 

Galerkin method, since the same functions are employed as expansion and 

testing functions, is intimately related to the Rayleigh-Ritz method 

[I], which minimizes the functional: 

obtained by taking the inner product of (5.3a) w i t h .  As is well known 

[2], this functional is stationary about the eigenfunctions of (5.3)  and 

the stationary values are then the corresponding eigenvalues. If we 

substitute the expansion (5 .5 )  into (5.9) and apply the constraints: 

then (5 .6 )  is obtained. 

The important problem, which must be addressed when using the 

Galerkin-Rayleigh-Ritz method summarized above is the proper choice of 

the set of basis functions in ( 5 . 5 ) .  The usual choice of the empty- 

cavity modes for the expansion functions [I] results in a slow con- 

vergence of the method when applied to the DR problem 131. The rate of 

convergence can be significantly improved by using the modes of the die- 

lectric post resonator [ 4 ] .  The price one pays for this improvement, 

however, is the necessity to solve the auxiliary eigenvalue problem of a 
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dielectric-post resonator as an intermediate step. Perhaps because of 

these difficulties, this method has not been used in the analysis of 

DRs, with the exception of Krupka's work [ 4 ] ,  which is limited to the TE 

axisymmetric modes of a DR on a substrate in a parallel-plate waveguide. 

The solution of electromagnetic boundary value problems is often 

facilitated by the introduction of vector potentials (or Hertz vectors). 

The magnetic vector potential, 8 ,  is defined by 

which is certainly consistent with (5.1~). Upon substituting (5.11) 

into the first two Maxwell equations, one arrives at 

with & given by 

2 -1 2 V A -  e ( Y ~ ~ ) y * A + k s A = 0  - 0 r (5.13) 

2 2 where ko = w pO". Obviously, the introduction of the vector potential 

did not result in much analytical progress, since the solution of (5.13) 

is not any easier than the solution of the original problem. However, 

we will see that the use of potentials is productive in cases where the 

resonator cross section can be divided into partial regions in which the 

field can be decomposed into constituents TM or TE to z. Approaches 

based on this procedure are sometimes referred to as partial region 

methods (PRM). We remark that although (5.13) is strictly valid only 

for continuous e we will be able to specialize it to the case of a r' 
piecewise-constant permittivity. 

Exact solutions of (5.3) are only available for the cases where the 

DR completely fills two of the cavity dimensions (the dielectric 

parallel-plate resonator discussed in Ch. 3 is one such case). In other 

cases, one must resort to numerical methods to find approximate so- 

lutions. Simple as it may appear, the problem (5.3) poses a formidable 

challenge, because it is vector in nature and because the relative 

permittivity er, in spite of being piecewise-constant, is a function of 

both p and z in the region where the solution is sought. With the PRM 

approach, it is often possible to reduce the vector eigenvalue problem 
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(5.3) to two simpler, scalar problems. 

In the case of pillbox or ring resonators placed concentrically in a 

cylindrical cavity, in a parallel-plate waveguide, or in free space (and 

we limit attention to these cases), it is always possible to break the 

resonant field into constituents (modes) with azimuthal variation given 

by cos m4 or sin m4 (as usual in problems with circular symmetry, there 

is a twofold eigenvalue degeneracy here), m = 0,1,2, . . . ,  and to analyze 

them independently, thus rendering the problem two-dimensional. As 

discussed in Ch. 3, in the axisymmetric case (m = O), the set of modes 

can be further divided into transverse electric to z, designated TE, or 

H modes, and transverse magnetic to z, designated TM, or E modes. If 

m > 0, only hybrid electromagnetic modes (having non-zero E and HZ) 

exist. These modes are denoted variously as HEM, HE, or EH modes. The 

use of both HE and EH to denote hybrid modes usually implies that the 

modes designated HE are considered "H like" and the modes designated EH 

are considered "E like." This method of designation, which is analogous 

to that used in cylindrical dielectric waveguides [5], is quite arbi- 

trary, for it depends on what one chooses as the criterion of "like- 

ness." For example, in one proposed scheme, the mode is designated EH 

if in a homogeneously filled cavity it ultimately becomes an E mode, 

etc. [6]. 

In the case of open DRs, or DRs placed symmetrically in a parallel- 

plate waveguide or a cavity, the modes can be further classified as 

either odd or even with respect to the (equatorial) symmetry plane. The 

odd (even) modes are those which are unaffected by inserting a PEC (PMC) 

wall in the symmetry plane. (Here, PMC stands for perfect magnetic 

conductor.) Some authors introduce additional symbols to distinguish 

between these modes [7,8]. 

Different modes from the same class are distinguished by two or 

(more often) three subscripts. The first subscript, m, almost always 

refers to the azimuthal dependence of the mode as either cos m4 or 

sin m4. In the case of a DR in free space, a second subscript, n, and a 

third subscript, p, are usually introduced, which refer, respectively, 

to the number of field extrema within the DR in the radial and axial 

directions. Often, the index p is replaced by Q + 6, where Q = 0,1, . . . ,  
and 0 < 6 < 1 [ 9 ] .  This notation means that there are Q and a fraction 

half-period field variations in the DR along the z-axis. 
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In the case of shielded DRs, a consensus has not yet emerged as to 

the meaning of the second and third ifldices. This is due to the fact 

that, depending on the value of erd and the relative dimensions of the 

dielectric sample and the PEC shield, the modes of the resonator can be 

considered as the modes of the cavity perturbed by the presence of the 

dielectric inhomogeneity, or the modes of the DR proper perturbed by the 

presence of the cavity. The former, referred to as the cavity-type, or 

exterior modes, are those whose energy is predominantly concentrated 

outside the dielectric sample, and whose resonant frequencies depend 

strongly on the size of the cavity, but are only weakly affected by the 

change in the size of the DR proper. The latter, referred to as the DR- 

type, or interior modes, are those whose energy is predominantly 

concentrated in the dielectric sample, and whose resonant frequencies 

are not drastically affected by changing the dimensions of the shield. 

Hence, in the case of the exterior modes it would make sense to follow 

the nomenclature used in the classification of the modes of the cavity 

forming the shield of the DR. Similarly, one could designate the 

interior modes according to the scheme adopted for the modes of the DR 

in free space. Unfortunately, this relatively clear picture is blurred 

by the occurrence of "mixed-type modes," whose energy is almost equally 

divided between the dielectric sample and its exterior in the cavity. 

Possibly for this reason, Zaki and Chen [ a ]  have recently proposed to 
use only two subscripts in the mode designation. In their system, the 

first subscript still refers to the angular variation of the mode and 

the second simply classifies the resonant frequencies in increasing 

order without any reference to the modal field distribution in the DR. 

Since most practical applications of DRs exploit the interior modes, the 

three-subscript notation does seem to have some merit, however. 

Until recently, DRs have been almost exclusively operated in the 

axisymmetric modes, the TEOl6 being the most popular. Consequently, 

most of the literature on the subject of dielectric resonators limits 

treatment to the axisymmetric case. As the DRs gain popularity, 

however, new applications are likely to appear, which will exploit the 

hybrid modes. For example, the HEMll6 mode has been recently employed 

in a dual-mode filter (see Sec. 9.8). Hence, efficient analysis methods 

capable of solving the problem (5.3) in the general, m # 0 case are 
becoming increasingly important. 
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In the next sections, we review various rigorous methods of solving 

the problem posed in (5.3). Our approach here is to describe in con- 

siderable detail one representative method and to review other rigorous 

methods in a more cursory way. Hence, we begin in Sec. 5.2 with a de- 

tailed treatment of a PRM approach based on a partition of the resonator 

in complementary annular regions, such as regions 1, 2, and 3 in Fig. 

5.1. This method belongs to a group of mode matching methods, which 

seem to be especially well-suited for the analysis of shielded reso- 

nators. A typical procedure in this category can be summarized as 

follows. The resonant system is divided into a number of complementary 

regions sufficiently regular to ensure the separability of the wave 

equation. The fields in each partial region are represented in terms of 

a series of the appropriate waveguide modes with yet unknown coef- 

ficients. When the fields of the adjacent regions are "matched" to 

satisfy the appropriate continuity conditions, an infinite homogeneous 

system of simultaneous linear equations is obtained for the expansion 

coefficients. This system has nontrivial solutions only when its de- 

terminant vanishes. Hence, the resonant frequencies can be found by 

searching for the zeros of the determinant. In practice, the system is 

truncated to a finite size N x N, for example, and computations are 

repeated with increasing N until convergence is achieved. Since in the 

procedure described in Sec. 5.2 we match the fields of radial waveguide 

sections, we refer to it as the radial mode-matching method. We illus- 

trate this method on the example of a ring resonator (Fig. 5.1), because 

it comprises a pillbox resonator as a special case when a = 0. For the 

sake of clarity and completeness, some of the tedious details are in- 

cluded in the appendices. . 
Other mode-matching methods are briefly reviewed in Sec. 5.3. A 

prominent member in this group is a method based on the division of the 

resonator into a number of horizontal layers, which can be considered 

sections of dielectric-loaded cylindrical waveguides. We refer to this 

procedure as the axial mode matching method. 

In Sec. 5.4, we review finite-element and finite-difference methods. 

These methods, which have only been applied to axisymmmetric cases, seek 

to solve (5.3) without first dividing the resonator cross section into 

more regular partial regions. The governing differential equation is 

either approximated in terms of finite differences over the whole 

resonator cross section or the unknown field is expanded in terms of 
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finite elements, leading to a matrix eigenvalue problem, which can be 

solved by standard procedures. Hence, the search for zeros of a matrix 

determinant is usually not required. 

In Sec. 5.5, we discuss perturbational methods based on the - 
expansion of the fields in asymptotic series in inverse powers of Jc 

r' 
where c is the relative dielectric constant of the DR. Although these 

methods are exact only in the limit as cr -r m ,  we choose to include them 

in this review because they are semi-analytic in nature and explicitly 

give the dependence of various parameters on e . Hence, the numerical 

solutiondoesnothave toberepeatedforeverynewvalueofc The 
r' 

perturbational methods have only been applied to axisymmetric cases. 

In Sec. 5.6, we discuss a group of methods based on the solution of 

surface or volume integral equations. These methods are applicable in 

cases where the suitable Green's function, which comprises the kernel of 

the integral equation, can be found. In the case of a DR in infinite 

space, which is discussed in detail in Ch. 6, the free-space Green's 

function is employed. As in the mode-matching methods, the resonant 

frequencies are found as zeros of a matrix determinant. 

In Sec. 5.7, we present selected numerical results which illustrate 

how changing various parameters affects the resonant frequencies of 

various modes of DRs. This section should also help the reader in- 

terpret the results presented in research papers and to alert him or her 

to the diverse notation used by various authors. 

We conclude this chapter in Sec. 5.8 with a brief discussion and 

assessment of the rigorous analysis methods. 

We should point out before leaving this section that the classifi- 

cation of methods introduced in this review is by no means the only one 

possible. One could easily devise other meaningful classifications 
T 

based on different distinguishing features shared by various methods. 
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5.2 Radial Mode Matchinv Method 

In the radial mode matching method, the resonator cross section is 

divided into complementary regions, as indicated in Fig. 5.1. We ob- 

serve that in each region the permittivity is independent of p ,  i.e., 

E = c~(z). In fact, cr is a piecewise-constant function of z. A typi- 

cal region with three dielectric layers is illustrated in Fig. 5.2. We 

4 PEC 

Fig. 5.2 Typical partial region in the radial mode-matching method 

seek to represent the field in each partial region as a superposition of 

TM and TE constituents which individually satisfy the boundary con- 

ditions at the PEC plates. We note from (5.11) that the magnetic vector 

potential with only a z component will generate field TM to 6. Hence, 

we postulate 

which reduces (5.13) to the scalar equation: 
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Upon substituting (5.14) into (5.11) and (5.12), one can express the 

magnetic and electric field components in terms of $e as 

He = 
P  POP 

1 
cos md J ,be { - sin md 
cos md 

, e = - L &  
P o a P  {sinmd} 

P  sin md 

j wm 

2 az 
COS mb 

j w  
E = - - [e -1 

+ ki $el { cOs m4 } 
k2 a z  'r az 
0  sin md 

As anticipated, the potential (5.14) generates a TM field, which is 

sometimes termed an E field (hence, the superscript e on $ and the field 

components). Since E and E must vanish on the PEC plates, we have 
P  

from (5.17): 
d 

& = O  at z = 0  and z = h  a z (5.18) 

Also, if a region is adjacent to a cavity wall, we require that 

where c is the radius of the cylindrical shield. If c = (parallel- 

plate waveguide), we replace (5.19) by the radiation condition. If the 

region borders on the z  axis, we must also require that $e be bounded at 
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p = 0. 

We note that (5.15) can be written as 

where D and D: are differential operators acting on functions of p and 
P 

z, respectively. We may expand $e in each partial region in terms of 

the eigenfunctions ze of the operator D~ as 
P 

where R~ are radial functions chosen to satisfy (5.15). The eigen- 
P 

functions ze and the corresponding eigenvalues ,le are determined by 
P P 

solving the Sturm-Liouville problem: 

d ~ e = O  at z = 0  and z = h  (5.22b) 
dz P 

For real and piecewise-continuous c r ,  the system (5.22) is self-adjoint 

and has an infinite number of real, discrete eigenvalues [lo]. The 

eigenfunctions Ze can also be made real-valued by multiplying them by 
P 

appropriate non-zero constants. When properly normalized, they are 
-1 orthonormal with a weight cr , i.e., 

where 6 is the Kronecker delta. (We will find the inner product 
Pq 

notation introduced in (5.23) useful in later developments.) With 

reference to Fig. 5.2, we have 
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Since the determination of ze and Xe is quite tedious in this case, we 
P P 

defer these tasks to Appendices 5.A and 5.B, respectively. 

Upon substituting (5.20) into (5.15) and using (5.22a), we find that 

the radial functions R~ must satisfy 
P 

: % [p 2 R;] - [A; + $1 R; = 0 

which is the modified Bessel equation of order n, with linearly - - 
independent solutions I~(Jx~ p) and K~(JX; p) [ll] . It is shown in 

P 
Appendix 5.B that a finite number of the eigenvalues Xe are negative. 

P 
Hence, if we introduce the notation: 

where te and ce are positive, we may choose J (rep) and ym(rep) as the 
P P m P P 

< 0, and linearly independent pair of solutions of (5.25) when Xe 

I~(<>) and ~~((~p) when 5 0 .  If the partial region is radially 
P P 

infinite, we may also have to use the special combination of J (rep) and 
m P 

and Y (rep), which represents an outgoing cylindrical wave, i.e., 
m P 

~(~)($~p), the Hankel function of the second kind. Thus, we define, for 
m P 
notational efficiency, 
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We may now express the radial function in a typical partial region, such 

as region 2 in Fig. 5.1, as 

In region 1, which borders on the z axis, we reject the Neumann and 

Macdonald functions, since they are unbounded at p = 0. Hence, we 

simply have 

(Region 1) Re(p) = Ae pe(p) (5.31) 
P P P 

If region 3 is finite, we select for Re(p) a combination of Bessel 
P 

functions which is consistent with (5.19). If c = m ,  however, we choose 

a solution of (5.25) which either represents a radially outgoing wave, 

or an evanescent wave. Hence, if we introduce the notation: 

we can write 

We note that if c = .o and at a resonant frequency Xe > 0, there is no 
P 

radiation of energy in the radial direction and the resonant mode is 

trapped. On the other hand, if Xe < 0, then radiation occurs and the 
P 

resonant mode becomes leaky. The resonant frequencies of leaky modes 

are complex-valued. 

Upon substituting the expansion (5.21) into (5.16) and (5.17), one 

finally obtains, for each partial region, 

m - sin mq5 
P = I R~(P)Z;(Z) 

"0P p=l p 
1 

cos mq5 ( 
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ju - J cos 3 
E~(P,~,z) P = - ;;-- z R;'(P)$'(z) 

k e p=l 0 r \ sin m4 

jum m 

$(P,/.z) = - 2 Z R ( ~ Z  (z) { - } (5.35b) 
k c p p=l 0 r 

In these equations, primes over quantities denote derivatives with 

respect to the argument. 

To be able to represent an arbitrary field in each partial region, 

we also need the TE part. Hence, by analogy with (5.11) and (5.14), 

which generate a TM field, we introduce the electric vector potential, 

F, as - 

with 

where the form of azimuthal dependence is chosen for consistency with 

(5.14). It may seem at first that (5.36) is inconsistent with (5.ld), 

which in expanded form is 

However, if we note that H is TE to z and, in each partial region, 
a = ar(z), we see that (5.38) gives E = 0, as required. r 

Upon substituting (5.36) and (5.37) into Maxwell's equations (5.la) 
h and (5.lb), one determines that $ must satisfy 

or, in operator notation, 
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The magnetic and electric field components can be expressed in terms of 

as 

j w  2 h  sintad1 
H = - - a d -  

k2 1 cos m4 I 0 

cos m41 
(5.41b) 

J - sin mb 
H = - -  1 (5.41~) 

cos md 1 
P eOp sin m41 J 

sin md } 
4I '0 cos md 

It is easy to see that in the present case the counterparts of (5.18) 

and (5.19) are, respectively, 

h 11 = O  at z = 0  and z = h  

and 

We expand 8 in terms of eigenfunctions zh of the operator D: as 
P 

The eigenfunctions Zh and the corresponding eigenvalues X~ are 
P P 

determined from 
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h Z = O  at z = 0  and z = h  (5.46b) 
P 

h When properly normalized, the eigenfunctions Z possess the orthonor- 
P 

mality property: 

h h The determination of Z and X for a typical partial region shown in 
P P 

Fig. 5.2 is discussed in Appendix 5.A. The choice of the radial 

functions R~ is dictated by similar considerations as in the TM case. 
P h 

Hence, the expressions for R (p) in regions 1 and 2 are as those given 
P 

in (5.31) and (5.30), respectively, with the superscripts e replaced by 

h. There is a difference in region 3, however, since now the radial 

functions must be consistent with (5.44). If we introduce the notation: 

h we may express R (p) in region 3, as 
P 

Finally, upon substituting (5.45) into (5.41) and (5.42), we obtain 

h jo h h  j - s i n m d  
HZ(p8d,z) = 1 C Rp(p)Xp Zp(z) (5.50~) 

ko p=l 1 cos md 
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The next step in the radial mode matching procedure is to enforce 

the continuity of tangential electric and magnetic fields across the 

cylindrical boundaries between regions 1 and 2 (p = b) and between 

regions 2 and 3 (p = a). Hence, if we distinguish the fields of the 

three partial regions by superscripts (I), (2), and (3) (we will omit 

the parentheses if there is no danger of confusing the superscript with 

a power), we can state the continuity conditions as 

It is noted that both the TM and TE field constituents in each partial 

region are incorporated in these equations. As the next step, the field 

expansions (5.34) to (5.35) and (5.50) to (5.51) are substituted in 
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(5.52), and the resulting equations are "tested." Here, testing means 

multiplying an equation by a member of a suitably chosen set of 

functions and integrating it in z between z = 0 and z = h. The natural 
e i choice for the testing functions are in our case the functions Z (z) 
P 

and zhi(z) , i = 1,2,3, because in each partial region they have the 
P 

orthogonality properties (5.23) and (5.47). Hence, we test (5.52a) with 

zel(z), (5.52b) and (5.52d) with Z~~(.Z)/~~(~)(Z), (5.52~) with ze3(z), 
q hl q h2 q 
(5.52e) with Z (z), (5.52f) and (5.52h) with Z (z), and (5.52g) with 
h3 9 9 

Z (z), where q = 1,2, . . .  As a result, we obtain an infinite homogene- 
q el 
ous set of algebraic equations for the coefficients A , B;~, 

P 
Ah', A:~, B:~, and Ah3, where p = 1.2,. . . If, in a partial region i, we 
P P 
truncate the infinite series (5.34) to (5.35) after N~~ terms, and the 

series (5 .SO) to (5 .Sl) after Nhi terms, this set reduces to a finite 

system of N~~ + 2Ne2 + Ne3 + Nhl + 2Nh2 + Nh3 equations with the same 
number of unknowns. This set has nontrivial solutions only at frequen- 

cies where the determinant of the system matrix vanishes. Hence, by 

searching for the zeros of the determinant, one can compute the resonant 

frequencies of the DR. Since the system matrix has many zero and unit 

submatrices (a result of the orthogonality of the expansion and testing 

functions), one can easily reduce its size by eliminating some unknowns 

in terms of the others. Hence, after straightforward but tedious alge- 

bra, we obtain the reduced N x N system given below, where N = 2Ne2 + 

The elements of the submatrices appearing in (5.53) are defined as 

a = ~~'(b)~~l6 (5.54) 
P9 9 P Pq 
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(5.85) 
jm h2 Ze2' (2)> 

N = - - S2(a)<zq , /er 
Pq wPOa 

jm e3 h2 =e3' (2)> p = -  S (a)<Zq , /er 
Pq wPoa P 

R = ph2' (.)lpq 
Pq q 

h2' 
S = Qq (46 
PP Pq 

h2 h3 
= - T ~ ~ ~ ( ~ ) < ~ ~  .Zp > 

Pq P 

The coefficients not appearing in (5.53) can be determined from 

The matrix inversions in (5.53) and (5.90) to (5.91) are trivial, since 

they only involve diagonal matrices. We also note that the inner 

products appearing in the matrix elements involve only trigonometric 

functions (Appendix 5.A) and can be integrated analytically. The 

expressions are tedious, however, and are not included here. 

In the case of axisymmetric modes (m = 0) the lower left and upper 

right quarters of the matrix of the system (5.53) become zero, hence it 

can be broken into two independent systems of lower dimensions, corre- 

sponding to TM and TE modes of the DR. In that case, the zeros of the 

determinant of the upper left quarter of the matrix yield the resonant 

frequencies of the TM modes, and the zeros of the determinant of the 

lower right quarter of the matrix give the resonant frequencies of the 

TE modes. 
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In the absence of losses, resonant frequencies of a shielded DR are 

real (Q factors are infinite). In that case, the zeros of the matrix 

determinant of the system (5.53) can be determined by the secant method 

[12], or a similar iterative procedure which does not require the 

knowledge of the derivative of the function whose zeros are being 

sought. The iteration is terminated when the change between two 

consecutive computed frequencies is less than some prescribed small 

value. As a rule, these procedures must be supplied with two values of 

frequency (starting points) reasonably close to the resonant frequency 

of the mode of interest. These starting points can be obtained by a 

preliminary analysis of the DR using one of the simple, approximate 

models (Ch. 4), or simply by plotting the determinant as a function of 

frequency in a specified frequency range and detecting its sign changes. 

As was mentioned earlier, resonant frequencies of leaky modes of a 

parallel-plate waveguide resonator are complex-valued and, consequently, 

they can be found by searching for the zeros of the determinant of 

(5.53) in the complex plane by means, for example, of Muller's method 

[12]. However, since the shield is usually designed to prevent the 

leakage of energy by radiation, the leaky modes are of little practical 

importance. 

The determinant of the matrix in (5.53) can be computed by the 

Gaussian elimination with partial pivoting (row interchanges) [12]. 

After the matrix is triangularized at a computed resonant frequency by 

the Gaussian procedure, the last diagonal element is typically several 

orders of magnitude less than the other diagonal elements (theoreti- 

cally, this element should be zero). Hence, one can discard the last 

equation, assign an arbitrary value to the last unknown coefficient and 

compute the remaining unknowns by back substitution. If desired, the 

computed coefficients can then be renormalized, for example, so that the 

maximum coefficient magnitude is one. We are at liberty to do so 

because at a resonant frequency the matrix in (5.53) is singular and the 

solution is only determined to within a multiplicative constant. The 

coefficients not included in (5.53) are obtained from (5.90) and (5.91). 

Of course, these coefficients are only needed if the modal field distri- 

bution is to be computed. The modal fields can be determined by adding, 

in each partial region, the corresponding field components given by 

(5.34) to (5.35) and (5.50) to (5.51). The plots of the modal fields 

are often indispensable when one tries to classify the mode, since only 
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the first mode subscript, m, is known a uriori. 

The radial mode matching approach was first applied to the analysis 

of cylindrical dielectric resonators by Kobayashi, et al. [7] and, inde- 

pendently, by Crombach and Michelfeit [6]. The first group of authors 

consider a pillbox resonator located at the center of a cylindrical PEC 

cavity or placed symmetrically in a parallel-plate waveguide. The sym- 

metry of the structure is exploited in the formulation and modes which 

are odd and even with respect to the symmetry plane are computed sepa- 

rately. The TE, TM, and hybrid modes are considered, but the results 

presented are for r > 90. More recently, Kobayashi and Miura [13] used 

the radial mode matching technique [7] to determine the optimum di- 

mensions for obtaining the best separation of the resonant frequencies 

of the neighboring modes from the resonant frequency of the mode of 

interest for ring and pillbox DRs. They did this for the TEOl6 and 

HEll6 modes, which are often used in microwave filters. 

The Crombach and Michelfeit [6] analysis is not limited to a sym- 

metric resonator and allows for the presence of the substrate. These 

authors consider both the pillbox and ring resonators enclosed by a 

cylindrical cavity in the general, m # 0 case. Field plots are pre- 

sented in [6] for the q u a ~ i - T E ~ ~ ~  mode of the cavity containing a 

pillbox resonator on a substrate for several different radii of the DR. 

Mode charts are also given showing the dependence of the resonant 

frequencies of several lowest-order modes of a shielded DR on the radius 

of the dielectric sample for constant cavity dimensions. Similar plots 

are given for the TEOl6 mode of a pillbox DR and a ring DR with the 

height of the cavity and the radius of the inner hole as parameters, 

respectively. Some of the results are quoted in Sec. 5.7. 

Convergence studies presented by Kobayashi et al. [7,13] indicate a 

rapid convergence of the resonant frequency for the TEOl6 mode, and much 

slower convergence rates for the TMOl6 and EHl16 modes. This phenomenon 

can be attributed to the predominance in the latter group of the E 

field component, which is singular near the edges of the dielectric 

sample [14,15]. Since the functions used in the expansion of the field 

at the side surface of the DR are continuous in z, they are not well- 

suited for representing this singular behavior and, consequently, an 

excessive number of terms is required to approximate the field distri- 

bution. This has been recognized in a recent paper by Kuznetsov et al. 

[15], who expand E on the boundary between the partial regions in terms 



RIGOROUS ANALYSIS METHODS 209 

of Gegenbauer polynomials with a weighting function, which takes into 

account the special features of the field behavior. Data presented in 

the paper indicate that with this approach resonant frequencies of all 

modes converge at a similar, fast rate. Several plots are presented in 

[15] showing the frequency variation of the lowest TE, TM, EH, and HE 

modes as functions of the resonator dimensions and the size of the cavi- 

ty. The effect of the substrate is taken into account. 

Finally, we mention the papers by Komatsu and Murakami [16], Maystre 

et al. [17], and by Maj and Pospieszalski [18], which only consider the 

axisymmetric TE modes. The first two authors [16] use the radial mode- 

matching method as an intermediate step in the analysis of the coupling 

between a microstrip line and a pillbox DR on a substrate in a parallel- 

plate waveguide. 

Maystre et al. (171 limit their attention to a parallel-plate reso- 

nator without substrate. Only a few numerical results are presented, 

showing the effect of the air gap on the resonant frequency of the TEOl6 

mode. These results compare favorably with experimental data, which are 

also included. 

Maj and Pospieszalski [18] allow in their analysis for up to three 

partial regions (cf. Fig. 5.1), which makes it possible to treat ring as 

well as pillbox resonators. In each partial region, they allow for an 

arbitrary number of layers, hence the substrate and double resonators 

can be accommodated. Numerical and experimental results are presented 

in the paper for the lowest TE mode for a double resonator in a 

parallel-plate waveguide. 
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5.3 Axial Mode Matchine and Other Methods 

The radial mode matching method described in detail in the previous 

section is based on the partition of the resonator cross section into 

partial regions in which the permittivity 6 is independent of the 

radial coordinate p (Fig. 5.1). Each partial region is then considered 

as a section of a dielectrically loaded radial waveguide. In a comple- 

mentary procedure, which will be referred to as the axial mode-matching 

method, the resonator is divided into partial regions in which E is 

independent of the axial coordinate (i.e., z), as illustrated in Fig. 

5.3. It is noted that all partial regions .so defined may be regarded 

Fig. 5.3 Shielded dielectric resonator (111) including substrate (I), 
support (11), and tuning post (V) (reference [ 2 3 ] ,  01984 AEU) 

as sections of dielectrically-loaded (regions 11, 111, and V) or homo- 

geneous (regions I and IV) cylindrical waveguides. Therefore, the 

transverse fields in each partial region i, i = I, . . . ,  V, can be expanded 
in terms of cylindrical waveguide modes as [19] 
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where are the modal propagation constants, E~ and Btn are the 
n -tn i transverse field expansion functions, and A,, and Bn are the field 

coefficients. At a given frequency, the propagation constants pi must n 
be found from a transcendental equation involving Bessel functions of 

order m and their derivatives, obtained by enforcing the continuity of 

the tangential field components inside each partial region and the con- 

dition of vanishing tangential electric field on the metallic enclosure. 

This equation, which also arises in the analysis of an infinite, 

partially filled cylindrical waveguide [20,21], is quite complicated due 

to the fact that, except for rotationally symmetric fields, the modes 

are neither TE or TM to any cylindrical coordinate. Hence, unlike in 

the radial mode matching method (Sec. 5.2), one has to deal with hybrid 

modes in all partial regions except for those which are homogeneous. 

When the field expansions (5.92) for adjacent partial regions are 

matched at common planar interfaces, a system of simultaneous algebraic 

equations is obtained for the expansion coefficients. The resonant 

frequencies of the DR can then be found as zeros of the system determi- 

nant, as in the radial mode matching method. 

The axial mode-matching method was first described by Hong and 

Jansen [19], but they only implemented it for the axisymmetric, m = 0 

case. According to the authors, this restriction was imposed to avoid 

complications introduced by the possible occurrence in some frequency 

ranges of complex-valued (i.e., having both the real and imaginary 

parts) propagation coefficients in some partial regions, as predicted by 

Clarricoats and Taylor [22]. Results are presented in [19] and in a 

later paper [23], showing the influence of the substrate, the shielding, 

and a dielectric disc support on the frequencies of various TE and TM 

modes of the resonator shown in Fig. 5.3. We quote some of these 

results in Sec. 5.7. 

More recently, Zaki and Atia [21] and Zaki and Chen [8] have applied 

the axial mode matching method to determine the TE, TM, and hybrid modes 

of a DR placed symmetrically in a cylindrical cavity. The same geometry 

was previously analyzed by Kobayashi et al. [7] by the radial mode- 

matching method. Zaki and Chen present plots of field distributions of 

several low-order modes in the equatorial symmetry plane and in the end 
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plane of the cavity. A mode chart is also given in [8] showing the 

dependence of the resonant frequencies of various modes as a function of 

the cavity height. The computed results are shown to agree very well 

with measured data. The authors claim that their method converges 

faster than the radial mode matching method used by Kobayashi et al. 

[71. 
Another rigorous approach, which can be classified as a mode- 

matching method (although the author himself refers to it as a differ- 

ential method), is due to Vincent [24]. This method is apparently 

applicable to both the TE and TM axisymmetric modes of a shielded 

resonator, but has only been implemented for the former. The only 

restriction on the shape of the DR is that it must be a body of revo- 

lution with respect to the z-axis. Furthermore, the permittivity erd of 

the dielectric sample can be a function of both p and z. In this pro- 

cedure, the cavity is divided into two complementary partial regions by 

an artificial cylindrical surface of radius R, which encloses the 

dielectric sample and extends from the bottom to the top plate of the 

shield. The E and H components of the fields are then expanded in 
0 

both regions in Fourier sine series in z. In the exterior region, which 

is homogeneous, the expansion coefficients can be expressed in terms of 

Bessel functions. In the inhomogeneous interior region, these coef- 

ficients are shown to satisfy a set of coupled first order ordinary 

differential equations, which is derived by expanding e (p,z) in a 

Fourier cosine series in z and by exploiting the orthogonality of 

Fourier harmonics. Subsequently, the coefficients of the interior 

region obtained by N simultaneous integrations of this system by a 

predictor-corrector formula starting from N arbitrary linearly inde- 

pendent values on the z axis are matched at p = R with the corresponding 

coefficients of the exterior region, resulting in an N x N set of homo- 

geneous algebraic equations. The zeros of the system determinant yield 

the resonant frequencies of the resonator. A plot is presented in the 

paper (241 showing the variation of the resonant frequency of the TE 016 
mode of a disc DR in a parallel-plate waveguide as a function of the 

width of the air gap. Also, plots are given showing the change in the 

resonant frequency of a dielectric sphere versus the distance between 

the plates and versus the radius of the sphere. The author claims that 

this method is highly accurate for resonators with dielectric constants 

not exceeding 35. The presented results were obtained with N not 
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exceeding 11 and with 50 or less integration steps. 

We conclude this section with a brief description of the approach of 

~suji et al. [25,26] to the analysis of isolated DRs. These authors 

expand the fields inside and outside a pillbox resonator in terms of 

spherical wave functions [20] and match the tangential field components 

gt and Ht of the two regions at the DR's surface. Since this surface is 

not spherical, the orthogonality of the modes cannot be exploited in the 

computation of the modal coefficients. Therefore, rather than trying to 

match the fields exactly, these authors fit the fields to the boundary 

conditions in the least-squares sense. For this purpose, the mean 

square error E is defined as 

where the subscripts 1 and 2 refer, respectively, to the interior and 

exterior regions, and ql is the intrinsic impedance of region 1. It is 

noted that, because of the axial symmetry of the structure, the integral 

over the whole surface of the DR could be reduced in (5.93) to just an 

integral along the boundary contour r of the resonator at an arbitrary 
&coordinate. The field expansions, truncated to N terms, are substi- 

tuted into (5.93) and the derivatives of E with respect to the modal 

coefficients are set to zero, as in the Rayleigh-Ritz procedure [I]. 

Nontrivial solutions of the resulting system of homogeneous algebraic 

equations yield the coefficients which minimize the error E. The reso- 

nant frequencies can be found by searching for the zeros of the system 

determinant in the complex angular-frequency plane. Having found a com- 

plex zero s = o + jw, one computes 
intrinsic quality factor Qo due to 

Using this technique, Tsuji et al. 

the resonant frequency fo and the 

radiation loss as 

125,261 computed resonant frequencies 

and Q factors of several lower-order TE, TM, HE, an EH modes for pillbox 

resonators with different aspect ratios. Their results compare very 

well with measured data, which are also included. Convergence studies 

reported in [26] indicate that as few as ten terms in the series are 

required for convergence in the case of the HE modes, and about twice as 
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many in the case of the EH modes. The slower convergence rate for the 

latter mode group is attributed to the predominance in the EH modes of 

the E field component, which is singular at the edges of the DR 

[14,15]. This method is also applicable to shapes other than pillbox, 

provided they are axisymmetric. 
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5.4 Finite-Element and Finite-Difference Methods 

Finite-element and finite-difference methods have only been applied 

in the case of the +independent TM and TE modes. The field equations 

for those modes can be easily obtained by putting m = 0 in (5.16) and 

(5.41), respectively. It is customary, however, to express the field 

components of the TM (TE) modes in terms of H6 (E4), rather than ge 
($h). Hence, in the TM case we have, from (5.15) and (5.16), 

where we defined for future reference operator D as 

The equations (5.95) are valid in each region over which or is constant, 

but do not hold at interfaces across which c changes discontinuously 

[27]. However, we may solve for the fields in each homogeneous region 

and match the 

solution that 

In the TE 

tangential components at the interfaces to obtain a 

is valid everywhere. 

case, we have, from (5.40) and (5.41), 

and 

In the remainder of this section we will limit attention to the TE case, 

since the development for the TM case is similar. 

In the finite-element method [ 2 8 , 2 9 ] ,  the resonator cross section 

(Fig. 5.1) is subdivided into a finite number of patches or "finite 
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elements," usually of triangular shape, and in each patch the unknown is 

represented as a linear combination of interpolatory polynomials N i' 
Hence, if we put a = E for notational simplicity, the value of a 4 
anywhere within a triangular finite element may be written as 

(5.98) 

where ci are the unknown coefficients, which are the values of a at the 

M specified points (nodes) of the triangle. Owing to the rotational 

symmetry of the resonator (Fig. 5.1), it is sufficient to triangularize 

only one-half of the meridian cross section. The permittivity inside 

each element must be constant. The polynomials Ni are constructed such 

that a is continuous across the element boundary, so that the field 

continuity conditions are automatically satisfied. If first-order 

polynomials are employed (M = 3 in that case), (5.98) is called a first- 

order element. Usually, it is more efficient to use second- or higher- 

order finite elements [29]. 

There exist several different finite-element formulations, the 

variational method and the weighted-residual method being the most 

popular. In the former, use is made of the functional: 

v 
which is stationary about the solution of (5.97~) [2]. Here, the inte- 

gral is over the resonator volume V. Since a is &independent, the 

integration in 6 is trivial and the remaining double integral can be 
transformed by integration by parts as 

where we omitted a multiplicative factor of 2n ,  which is of no conse- 

quence. The first integral in (5.100) is over the resonator cross 

section C, and the second is along its boundary contour c, which has a 
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unit normal fi. In the case of a DR in a PEC cavity (Fig. 5.1), the 

second integral is identically zero, because E = 0 on c. For an open 

resonator, this term vanishes likewise on account of the radiation 

condition, but the first integral is over the infinite space. 

Substituting (5.98) into the functional (5.100) and imposing the 

Rayleigh-Ritz conditions 

leads to the generalized 

where A and B are square - - 

[I]: 

aF(cz)/aci = o (5.101) 

matrix eigenvalue problem: 

2 AJc> = k Blc> - 0 (5.102) 

matrices of known coefficients. The deriva- 

tives in (5.101) are only taken with respect to the coefficients of 

interior nodes, since the coefficients of the boundary nodes and the 

nodes on the z-axis are known to be zero. The system (5.102) can be 
2 solved for the eigenvalues ko and the corresponding eigenvectors ]c> by 

using a standard computer subroutine. The resonant frequencies of the 

resonator are then easily obtained from the eigenvalues, and the eigen- 

vectors yield the coefficients, which can be used in (5.98) to recover 

the corresponding modal field distributions. 

In the weighted-residual formulation, the approximation (5.98) is 

substituted into the differential equation (5.97~) and the residual is 

minimized with respect to a set of suitably chosen weighting functions 

by the Rayleigh-Ritz procedure. When the same functions Ni are selected 

for the expansion and weight functions, this method is called the 

Galerkin weighted-residual approach, and can be shown to be equivalent 

to the variational method described above. 

To achieve sufficient accuracy, hundreds of finite elements are 

typically required. However, the matrices in (5.102) are sparse (i.e., 

most of the entries are zeros) due to the fact that the element of the 

ith row and jth column is non-zero only if i and j correspond to nodes 

of the same triangle. 

The finite-element method was applied in the present context by Gil 

and Gismero [30], Gil and Perez [31], and by Kooi et al. (321. Gil et 

al. [30,31] have used first- and higher-order rectangular elements to 

solve the problem of TE and TM modes of a shielded DR with the effects 

of the substrate, the dielectric support (spacer), and the tuning screw 
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taken into account. They present results for a double resonator, ring 

resonator, and pillbox resonator, which are in excellent agreement with 

the results of previous analyses [18,13,17] by mode-matching methods. 

They also present new results showing the change in the resonant 

frequency of the TEOl6 mode versus the diameter and depth of penetration 

of a tuning screw. 

The Kooi et al. [32] analysis is limited to the fundamental TE mode 

of a shielded pillbox DR on a substrate. They employ only first-order 

triangular elements, hence the computed results are not very accurate. 

The resonant frequency of the TEOl6 mode is plotted as a function of 

many parameters, such as the substrate thickness, the resonator height, 

and the size of the cavity. Some measured data are also included for 

comparison. 

In the finite-difference method, the operator itself, rather than 

its domain, as in the finite-element method, is discretized. These two 

techniques bear many similarities, however. In applying the finite- 

difference method to the resonator of Fig. 5.1, we introduce a rectangu- 

lar grid of nodes (i,j) in one half of the meridian cross section and 

replace the differential operator in (5.97~) by the usual finite differ- 

ence approximation [2]. If we distinguish quantities associated with a 

node (i,j) by the subscripts ij in a region with dielectric constant c 
r' 

we obtain 

where the distance between adjacent points of the grid is taken to be Ap 

along the radial direction, and Az along the z-axis. If we introduce 

2 2 
Pi= iAp , R = Az ' and X = k 0 (Ap) 

we can rewrite (5.103) as 
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These equations must be properly modified for grid points adjacent to 

the metallic cavity walls, to account for the short-circuit boundary 

conditions there [ 3 3 , 3 4 ] .  When the equations for all grid points (i,j) 

are collected, we obtain the matrix eigenvalue equation: 

where A is a non-symmetric band matrix. This equation can be solved for - 
the eigenvalues X and the corresponding eigenvectors la> by standard 

methods . 
The finite-difference procedure summarized here was used by Guillon 

and his coworkers [ 3 3 , 3 4 , 3 5 ] .  Computed results are presented in [ 3 3 , 3 4 ]  

for the TM and TE modes of pillbox, ring, and double DRs in a cylindri- 

cal cavity. In several cases, experimental data are included and are 

shown to compare very well with the computed results. 
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5 .5  Perturbational Methods 

In discussing the perturbational-asymptotic series technique, we 

will refer to the ring dielectric resonator illustrated in Fig. 5 . 4  (of 

which the pillbox is a special case). Only one half of the meridian 

cross section of the rotationally symmetric structure is shown in the 

figure. The DR resides in free space and is characterized by the 

Contour r 
with normal 5 

-. 

Fig. 5 . 4  Ring resonator in free space 

relative dielectric constant e It will also be convenient in the 
r' 

subsequent discussion to. also introduce the index of refraction N as 

The meridian plane is subdivided into regions I, 11, and 111, as illus- 

trated in the Fig. 5 . 4 .  It should be noted that regions I1 and I11 have 
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the same dielectric constant of free space, hence the circular boundary 

C separating them is merely an artifice introduced in the analysis. 

We will limit attention to the axisymmetric TE modes. Hence, 

putting a = E and referring to (5.97c), we see that a must satisfy 
d 

a = 0 , in region I (5.108a) 

[ a + $ a = 0 , in regions I1 and 111 (5.108b) 

In addition to satisfying (5.108), a and aa/an must be continuous on the 

generating contour r ,  which has an outward normal 6. Also, a must be 

zero on the z-axis and at infinity. Equations (5.108), subject to these 

boundary conditions, constitute an eigenvalue problem, which must be 

solved for the resonant wave number k and the corresponding modal 

function a (the number of such solutions is infinite, but we will be 

only interested in one or two lowest, dominant modes). Having found k, 

one can determine the resonant frequency from 

where c is the velocity of light in vacuum. The corresponding modal 

function a is substituted in (5.97) to obtain the fields, from which one 

can determine the Q factor due to radiation losses from (see Ch. 2) 

where W is the total stored field energy and Pr is the radiated power. 

In the perturbational approach, which is sometimes referred to as 

the Van Bladel's method after its originator [ 3 6 ] ,  the eigenvalue 

problem (5.108) is solved iteratively by expanding a and k in the asymp- 

totic power series in inverse powers of N as 
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where the functions a 2 2 0, a2, ..., and the coefficients kg, (k )2,..., are 
independent of N. It can be shown [37] that only even inverse powers of 

N are present in (5.111). The coefficient k appearing in (5.111b) is 0 
the zero order approximation to k, and must not be confused with the 

free-space wave number, which is not explicitly used in the remainder of 

this section. The series (5.111) is inserted into (5.108) and the 

coefficients of equal powers of 1/N on both sides are equated, yielding 

the system of equations which the expansion coefficients must satisfy. 

Thus, equating the coefficients of zero powers of 1/N leads to the 

following equation for a. 1371: 

2 Doo + kOaO = 0 , in region I (5.112a) 

Da = 0 , in regions I1 and I11 0 (5.112b) 

Similarly, equating the coefficients of 1 / ~ ~  yields the equation for a 
2 

[37] : 

2 Do2 + k a = - (k2) 0 2 2ao , in region I (5.113a) 

2 Da = - k a  2 , in regions I1 and I11 (5.113b) 

Using the expansions (5.111), one can represent the Q factor (5.110) 

as [37] 

with the leading term given by 137,381 

where the integration is over the DR cross section (region I in Fig. 

5.4). 

Equations (5.112) can be solved by the finite-element method dis- 

cussed in the previous section. In the present case, with N + 41, the 
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functional (5.100) takes the form: 

The application of the finite-element method to the configuration of 

Fig. 5.4 is complicated by the fact that the region of interest is of 

infinite extent. To overcome this difficulty, Verplanken and Van Bladel 

[38] postulate zero field outside a finite spherical region of radius R, 

where R is chosen large compared with the dimensions of the DR (R = 10a, 

for example [39]). Consequently, they triangularize only regions I and 

11, and set a. to zero in region I11 (Fig. 5.4). This rather crude 

approximation may result in poor accuracy of the solution. In a more 

refined approach, DeSmedt [37] approximates the field in region I11 by a 

finite series of static spherical harmonics of the form: 

1 m Ai Pi(cosB) 
a o =  C -  , in region I11 (5.117) 

i=l r i+l sine 

The unknown coefficients A are obtained by enforcing the continuity of i 
this series and the finite-element basis functions on the contour C 

(Fig. 5.4) (the boundary integral appearing in (5.100) must be retained 

in the functional (5.116) in this case). 

Having solved the system (5.112) for k and a0, one can compute the 0 
leading terms in the asymptotic expansions for the resonant frequency 

and the Q factor from (5.109) and (5.115), respectively. Using this 

method, Verplanken and Van Bladel obtained results for the TM [39] and 

TE [38] fundamental modes of ring and pillbox DRs. In the TE case, this 

zero-order theory does not yield sufficient accuracy for the values of 

c commonly used in DRs. Comparison with the known analytical solution 

of the spherical resonator shows the accuracy to be, for the lowest mode 

and c = 100, on the order of 1 8 for the resonant frequency and 10 8 

for the quality factor. For cr = 35, which is a value often used in 

practice, the accuracies worsened by a factor on the order of two [38]. 
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Recently, DeSmedt [37] extended the limits of applicability of the 

perturbational approach by evaluating higher-order (correction) terms in 

the asymptotic series (5.111) and (5.114). For example, the coefficient 
2 (k )2 in (5.112b) is shown to be given by [37] 

2 2 With ao, ko, and (k )2 determined, the finite-element method can be 

employed to solve the system (5.113) for a2, which gives the second 

term in the asymptotic series for the modal function a. The solution of 

(5.113) is unique if one imposes the proper orthogonality condition on 
2 a0 and a2 [37]. With a determined, the higher order coefficients (k )4 2 

and Q2 can be computed from rather lengthy formulas given in [37], and 

can be used in (5.109) and (5.114) to compute the corrected values of f 
0 

and Q, respectively. DeSmedt [37] reports that for the spherical DR, 

using one term, two terms, or three terms in the expansion (5.111b) for 

k, respectively, gives a relative error of about 2.1, 0.54, or 0.17 

percent at c = 39. Also, including one or two terms in the expansion 

(5.114) for Q yields accuracies of 19 % or 1.3 % ,  respectively, for the 

same DR. To achieve these accuracies, a total of 70 third-order finite 

elements in regions I and 11, and nine terms in the expansion (5.117) in 

region I11 were required [37]. 

The perturbational method has the remarkable feature that the calcu- 

lations do not have to be repeated for every new value of c . There- 

fore, once the systems (5.112) and (5.113) are solved for the specified 

dimensions a, b, and L (Fig. 5.4), one can compute the resonant frequen- 

cy from (5.109) and the Q factor from (5.114) for any (but sufficiently 

large) value of cr. Also, one can quickly investigate, without ad- 

ditional computations, the effect of variations of cr on the properties 

of the resonator. For example, from (5.109) and (5.111b), one can 

easily derive the relative shift of the resonant frequency due to a 

variation in c to be [37] 



RIGOROUS ANALYSIS METHODS 

The field structure of the lowest, 4-independent TE mode of a DR 

closely resembles that generated by a magnetic dipole [38]. For this 

mode, Ed, and thus a, is an even function with respect to the equatorial 

plane (Fig. 5.4), i.e., aa/az = 0 at z = 0, which is the magnetic wall 

condition. The Q factor due to radiation of the magnetic dipole mode is 

proportional to N ~ ,  as can be seen from (5.115). The lowest TE mode for 

which a = 0 at z = 0, i.e., the mode which satisfies the electric wall 

condition on the equatorial plane, has a field structure similar to that 

of a magnetic quadrupole. It can be shown [37] that the Q factor of the 
5 magnetic quadrupole mode is proportional to N . DeSmedt has found both 

the magnetic dipole and quadrupole modes for a DR in free space [37], 

above an electric or magnetic wall [40], and inside a cylindrical wave- 

guide [41]. We quote some his results for the free space case in Sec. 

5.7. 

The TE modes are sometimes termed the "unconfined modes" [36], 

because in the limit, as c + .o, their magnetic field does not vanish on 

the surface of the resonator. In contrast to the TE modes, the 4- 
independent TM modes are of the "confined" type, because as er -t m, 

their magnetic field is zero on the DR's surface. The lowest modes of 

this variety have a field structure similar to that of an electric 

dipole or electric quadrupole [39]. The electric dipole mode is of 
5 interest for applications because its Q factor is proportional to N . 

Before leaving this section, we mention another perturbational 

technique based on an asymptotic series expansion in terms of inverse 

powers of N, recently developed by Gol'berg and Penzyakov 1421. In 

contrast to Van Bladel's approach described above, which is based on the 

solution of a partial differential equation, the Gol'berg and Penzyakov 

method is based on a volume integral equation for the electric field in 

the DR. Therefore, their technique has the advantage that the fields 

outside the dielectric sample do not have to be considered. On the 

other hand, the integral equation technique leads to a full matrix, 

whereas the matrix in the differential equation method is sparse. 

Gol'berg and Penzyakov [42] considered the +-independent TE modes and 
O ~ P  

computed resonant frequencies and Q factors of several modes for DRs of 
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various shapes (spherical, pillbox, ring, double), and for composite and 

inhomogeneous DRs. 
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5.6 Green's Function - Integral Eouation Methods 
As the name indicates, the integral equation methods are based on 

the solution of an integral equation, rather than a differential 

equation. The integral equation is derived by means of a suitable 

Green's function, which constitutes its kernel. There are two integral 

equation formulations possible [43]. In one, which employs a volume 

integral equation, the dielectric inhomogeneity (i.e., the DR) is 

replaced by equivalent polarization currents. In the other, the DR is 

replaced by equivalent electric and magnetic surface currents, leading 

to a surface integral equation. The success of either of these methods 

depends on one's ability to find the suitable Green's function, which is 

usually a dyadic [44]. The situation is simpler in the case of an open 

resonator, since only the free-space Green's function is required [49] 

(see also Ch. 6). 

In the case of shielded resonators, the determination of the Green's 

function tends to be difficult, particularly for more complex reso- 

nators. This task can be somewhat simplified by subdividing the reso- 

nator into two regular partial regions and by erecting a PMC or PEC wall 

at the boundary between the regions [45,46]. Magnetic or electric 

current sheets are then postulated on this wall, maintaining the correct 

field in both regions. By enforcing the field continuity condition 

between the partial regions, an integral equation is obtained for the 

unknown current. This equation is then discretized by the method of 

moments [I], employing suitable expansion and testing functions. The 

resonant frequencies are obtained as zeros of the matrix determinant, as 

in the mode matching methods. Jaworski and Pospieszalski [45] have 

employed this method in the case of axisymmetric TE modes of a pillbox 

resonator placed symmetrically in a parallel-plate waveguide. The 4- 
independent TM modes of a DR in a cylindrical cavity were analyzed by 

this technique by Kapustin [46]. 

The volume integral equation method was used by Omar and Schunemann 

[47,48] to analyze DRs in a cylindrical cavity and in a rectangular 

waveguide. 
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5 . 7  Sample Numerical Results 

We present in this section selected numerical results obtained by 

various rigorous methods which have been discussed in this review. 

These results illustrate how changing various parameters affects the 

resonant frequencies of various modes of open and shielded DRs. This 

section should also help the reader interpret the data presented in 

research papers and to alert him or her to the diverse notation used by 

various authors in classifying the modes. For more results the reader 

is referred to the papers listed in the bibliography at the end of this 

chapter. 

The data presented in Figs. 5.5  through 5 .9  are for a ring resonator 

in free space (see Fig. 5 . 4  for the geometry) and were obtained by 

DeSmedt [ 3 7 ]  by the perturbational approach discussed in Sec. 5 . 5 .  The 

pillbox resonator case is included in these results as a special case 

when b/a = 0. These data show the dependence of the resonant wave 

number and the Q factor on the aspect ratio L/(2a) and the (normalized) 

size of the inner hole b/a. The solid lines pertain to the TE 016 
(magnetic dipole) mode and the dashed lines to the TE 011+6 (magnetic 

quadrupole) mode. Figure 5 .5  gives the zero-order normalized resonant 

Fig. 5 .5  Zero-order resonant wave number kga versus aspect ratio L/(2a) 
for b/a = 0, .25, . 5 ,  and . 75 .  Full line pertains to the 
TE016 (magnetic dipole) mode, and the dashed line to the 
TE011+6 (magnetic quadrupole) mode. The geometry of the 
resonator is shown in Fig. 5 . 4  (reference [ 3 7 ] ,  01984 IEEE) 
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2 2 
Fig. 5.6 First correction of the resonant wave number -(k )2/k0 versus 

aspect ratio L/(2a) for b/a = 0, .25, .5, and .75. Full line 
pertains to the TE016 (magnetic dipole) mode, and the dashed 
line to the TE011+6 (magnetic quadrupole) mode. The geometry 
of the resonator is shown in Fig. 5.4 (reference 1371, a1984 
IEEE) 

.2 .S ? 2 5 
LRa 

2 2 
Fig. 5.7 Second correction of the resonant wave number I (k I4/k01 

versus aspect ratio L/(2a) for b/a = 0, .25, .5, and .75. 
Full line pertains to the TE016 (magnetic dipole) mode, and 
the dashed line to the TE011+6 (magnetic quadrupole) mode. 
The correction is positive for the dipole mode and negative 
for the quadrupole mode. The geometry of the resonator is 
shown in Fig. 5.4 (reference 1371, Q1984 IEEE) 
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wave number k a, and Figs. 5.6 and 5.7 give, respectively, the first and 0 
second corrections (see (5.111b)). The zero-order Q factor is shown in 

Fig. 5.8, and the first correction (see (5.114)) in Fig. 5.9. 

These plots are extremely useful because they are universal, i.e., 

they can be used to easily compute the resonant frequency and the Q 

factor for a wide range of values of L/(2a) and b/a for any (but suf- 

ficiently large) value of c Take, for example, a pillbox DR with r' 
a = 5.25 mm, L = 4.6 mm, and c = 38. For the TEOl6 mode of this reso- 

nator Kajfez et al. [50] obtained fo = 4.829 GHz and Q = 45.8, using the 

integral equation technique (see Ch. 6). Since L/(2a) = 0.44, we read 

from Fig. 5.5 k a = 3.37, which for a = 5.25 mm gives ko = 641.91. 0 
Using this value for k in (5.109), we obtain the zero-order resonant 

frequency as 4.97 GHz, which is about 3 % above the Kajfez et al. [50] 

result. If a more accurate value is desired, we read from Fig. 5.6 the 
2 2 first correction, -(k ) /k = 2.25. Using this in (5.111b) with cr = 38 2 0 

gives the corrected value k = 622.65, which is substituted in (5.109) to 

give the improved value of fo as 4.82 GHz. Carrying this process one 

step farther, we read from Fig. 5.7 the second correction, (lc2)4/ki = 

25, which when used in (5.111b) and (5.109) yields the resonant frequen- 

cy as 4.87 GHz. This value is less than 1 % above the value given by 

Kajfez et al. [50], which, considering the fact that the integral 

equation method always underestimates the resonant frequency, is very 

accurate. The Q factor can be determined in a similar way from Figs. 

5.8 and 5.9. For the resonator considered above, one easily gets the 

zero-order Q factor as 32.80, and the corrected value as 42.31, which is 

less than 8 % lower than the value given by Kajfez et al. [50]. 

The remaining results presented in this section are for shielded 

resonators. Before discussing these data, it is useful to elaborate 

some more on the classification of the resonant frequencies computed by 

the rigorous methods (see the discussion in Set> 5.1). Since these 

frequencies are usually found as zeros of a matrix determinant, it is 

not always easy to establish which frequency belongs to which mode. 

Perhaps the most reliable procedure, but at the same time the most 

tedious one, is to make detailed plots of the field structure at the 

given resonant frequency. From such plots, one can determine the number 

of field extrema within the dielectric sample in the radial and axial 

directions, and assign the proper set of indices to the mode in 
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Fig. 5.8 Zero-order Q factor versus aspect ratio L/(2a) for b/a = 0, 
.25, .5, and .75. Full line shows Q ~ / N ~  for the TE016 
(magnetic dipole) mode, and the dashed line Q ~ / N ~  for the 
T E o ~ ~ + ~  (magnetic quadrupole) mode. The geometry of the 
resonator is shown in Fig. 5.4 (reference [37], Q1984 IEEE) 

o !  1 . . . . I  1 i 
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Fig. 5.9 First correction of the Q factor 42/40 versus aspect ratio 
L/(2a) for b/a = 0, .25, .5, and .75. Full line pertains to 
the TE016 (magnetic dipole) mode, and the dashed line to the 
TE011+6 (magnetic quadrupole) mode. The geometry of the 
resonator is shown in Fig. 5.4 (reference [37], 01984 IEEE) 
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question. If mode matching techniques are employed, a much easier (but 

less reliable) procedure can be used. To be specific, assume that the 

axial waveguide approach is employed (see Sec. 5.3). In this case, Hong 

and Jansen [23] observed that the TE and TM resonances with higher 
O ~ P  O ~ P  

values of the radial index n can only be found if the number of terms N 

in the series expansions in partial regions (see (5.92)) is large 

enough. With N = 1, for example, it is only possible to establish 

numerically the presence of the TE and TM modes. When N is 
O ~ P  O ~ P  

increased to 2, the resonances with n = 2 also appear, and so on. 

The results in Figs. 5.10 through 5.12 pertain to the shielded DR 

shown in Fig. 5.3, where the dielectric sample has radius Rd = 3.03 mm, 

height Hd = 1 - e  = 4.22 mm, and relative dielectric constant E = 
3 2 rd 

36.2. These data were obtained by Hong and Jansen [23] by the axial 

mode-matching technique (Sec. 5.3). Figure 5.10 shows the dependence of 

the resonant frequencies of several lowest axisymmetric modes on the 

radius R of the cylindrical shield in the case where the pillbox reso- 

nator lies directly on the substrate. The subscripts D and H denote, 

respectively, the DR-type and cavity-type resonances (H stands for 

"Hohlraum," which means cavity in German). It can be observed in Fig. 

5.10 that if the distance of the side wall of the shield is not too 

close to the DR, the TE resonant frequencies only weakly depend on R. 

This behavior is in contrast to the TM frequencies, which vary rapidly 

with R. 

Figure 5.11 shows the dependence of the resonant frequencies of the 

same resonator (Fig. 5.3) on the height H of the shield for R = 15 mm. 

It is noted that when the distance between the shield and the top of the 

resonator is small, the frequencies vary rapidly and the curves for 

various modes intersect, making the identification of modes extremely 

difficult (this is even more evident in the data presented by Kobayashi 

et al. [7] and Zaki and Chen [a]). When this separation is reduced, the 

TE resonant frequencies increase, while the TM frequencies decrease. 

For a larger separation between the shield and the DR, the dependence of 

the TE resonances on H is weak. The subscripted word "hzher" (German 

for higher) designates a higher-order mode whose indices have not been 

identified. 

Figure 5.12 illustrates the influence of the dielectric tuning rod 

of radius R5 = 3 mm on the resonant frequencies of the resonator of Fig. 

5.3 for H = 8.9 mm and R = 15 mm. Data are presented for two values of 
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Fig. 5.10 Resonant frequencies of the shielded DR of Fig. 5.3 versus 
the radius R of the cylindrical shield for Rd = 3.03 mm, 
Hd = 13-82 = 4 . 2 2  mm, c,-d = 3 6 . 2 ,  Ql = Qq = 0.7 mm, H = Q q  = 
8.9 mm, and erl = 9.5. The subscripts D and H denote, 
respectively, interior and exterior modes (reference 1231 ,  
01983 AEU) 

the dielectric constant fr5 of the tuning rod: the solid lines are for 

= 10, and the dashed lines for \5 = 36.2 (which is the same as the r5 
dielectric constant of the resonator). It can be seen that all resonant 

frequencies decrease with increased depth of penetration of the rod. 

For e = 3 6 . 2 ,  the resonant frequency of the TEOl6 mode can be changed 
r 5 

by about 2 . 5  % (from 8.199 GHz to 7.988 GHz) by increasing the length of 

the rod H - t4  from 0 to 3 mm (when H - Q4 = 3 mm, the separation 

between the top of the DR and the tuning rod is about 1 m). 
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Fig. 5.11 Resonant frequencies of the shielded DR of Fig. 5.3 versus 
the height H of the cylindrical shield for Rd = 3.03 mm, 
Hd = Qg - Pp = 4.22 mm, crd = 36.2, PI = P2 = 0.7 mm, H = Qq, 
R = 15 mm, and "1 = 9.5. The subscripts D and H denote, 
respectively, interior and exterior modes (reference [23], 
01983 AEU) 

The last two figures (Figs. 5.13 and 5.14) show data obtained by 

Crombach and Michelfeit [6] by the radial mode matching technique (see 

Sec. 5.2). These authors classify the axisymmetric TE (H) modes as 

interior (DR-type), exterior (cavity-type), or mixed, using a different 

and perhaps less ambiguous criterion than the energy distribution 

criterion discussed in Sec. 5.1. According to Crombach and Michelfeit, 

a mode is of the interior type if all vortices of the magnetic field in 

a 4 = constant plane are inside the DR, and of the exterior type if all 

magnetic field vortices are outside. If some of the vortices are 
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Fig. 5.12 Resonant frequencies of the shielded DR of Fig. 5.3 versus 
the depth of penetration H-Qq of the tuning post for Rd = 
3.03 mm, Hd = Q3 - Q2 = 4.22 mm, crd = 36.2, Ql = Q2 = 
0.7 mm, H = 8.9 mm, R = 15 mm, Rg = 3 mm, and 6,- = 9.5. The 
solid lines pertain to er5 = 10, and the dashed lines to 
"5 = 36.2. The subscripts D and H denote, respectively, 
interior and exterior modes (reference [23], 01983 AEU) 

inside and some are outside, the mode is of the mixed type. In this 

nomenclature, the second index denotes the number of vortices in the 

radial direction and the third index denotes the number of vortices in 

the axial direction. The interior and exterior modes are distinguished, 

respectively, by subscripted and superscripted indices. The mixed-type 

modes carry both the subscripts and superscripts. For example, the 

mixed HZ:: mode has in the radial direction one vortex inside the DR and 

two vortices outside. 
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Figure 5.13 shows the dependence of the normalized resonant wave 

numbers bk of several modes on the normalized radius pA/b for a pillbox 
0 

resonator of thickness d = 0.35b and dielectric constant e2 = 30e0, 

where eo is the dielectric constant of free space. The DR resides on a 

substrate layer and is enclosed in a cylindrical cavity of height b and 

radius pS = 2b (see inset, Fig. 5.13). It is noted that resonant 

frequencies of all modes considered decrease with increasing pA and 

that, in the case of higher-order H (TE) modes, the frequency curves ex- 

hibit intervals of steep slope alternating with plateaus. Crombach and 

Michelfeit [ 6 ]  have shown, by computing the time-average energy density 

associated with various resonances, that in the intervals of steep slope 

the energy of the mode is concentrated inside the DR, and in the inter- 

vals corresponding to plateaus the energy in the cavity outside the DR 

prevails. Of course, it is desirable to use in technical applications 

the modes in the former category. 

Fig. 5.13 Lowest resonant wave numbers bko of the shielded DR (see the 
inset) versus the normalized radius pA/b of the dielectric 
sample for ps = 2b, h = 0.3b, d = 0.35b, €1 = 9.5~0, and 
€ 2  = 30e0, where €0 and kg are the free-space dielectric 
constant and wave number, respectively (reference [6], 01981 
Frequenz ) 
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Figure 5.14 shows the influence of the radius pI of the inner hole 

of a shielded ring resonator (see inset, Fig. 5.14) on the resonant 

frequency fo of the TEOlb mode for two values of the dielectric 

constant, (a) c2 = 30e0, and (b) r 2  = 40e0. It is seen that initially 

f varies slowly with increasing pI. When the ratio of the inner and 
0 
outer radii of the resonator reaches 1/3, f increases by only 1.2 % 0 

Fig. 5.14 Resonant frequency of the TE016 mode versus the radius p~ of 
the inner hole for a shielded ring resonator (see the inset) 
with ps = 17.5 mm, p~ = 7.5 mm, h = 3 mm, d = 6 mm, b = 
29 mm, €1 = 2.5~0, for (a) €2 = 30~0, and (b) €2 = 4 0 ~ 0 ,  
where €0 is the free-space dielectric constant (reference 
[6], 01981 Frequenz) 

with respect to the value for p = 0 (pillbox) in case (a), and by 2 % I 
in case (b). A further increase of the inner radius causes the resonant 

frequency to increase more rapidly. In this range of values of pI, the 

ring resonator can be effectively tuned by inserting a dielectric screw 

in the inner hole. In a recent paper, Crombach et al. [53] show that 

the resonant frequency can be varied up to 20 % by a tuning ring placed 

over the resonator. 

Finally, in Figs. 5.15 through 5.18 are shown magnetic field plots 

of the non-leaky TE modes for a typical DR in a parallel-plate 
O ~ P  

waveguide. These plots were obtained from a computer program, which 
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implements the radial mode matching method described in Sec. 5.2. The 

geometry of the resonator is as illustrated in Fig. 5.15. The high-e 

dielectric sample of radius R = 2.79 mm and height b = 2.24 mm resides 

on a substrate layer of thickness a = 0.635 mm. The distance between 

the DR top and the upper metallic plate is c = 2.2 mm. The relative 

dielectric constants of the substrate (2)' the DR proper (e ) ,  and the 2 
surrounding medium (e ) are, respectively, 10, 29.8, and 1. A resonator 3 
with these parameters was used by Komatsu and Murakami [16] in the theo- 

retical and experimental analysis of the coupling between a DR and a 

microstrip line. 

Fig. 5.15 Magnetic field lines in a 4=const. plane of the TEols mode of 
a resonator with a = 0.635 mm, b = 2.24 mm, c = 2.2 mm, 
€1 = 10, €2 = 29.8, and €3 = 1. The resonant frequency 
fo = 11.68 G H z .  

The first resonant mode (Fig. 5.15), which has the resonant frequen- 

cy fo = 11.68 G H z ,  can be classified as the TEOl6 mode (see the dis- 

cussion on the designation of modes in Sec. 5.1). The next (Fig. 5.16), 

with fo = 19.42 G H z ,  is the TE 011+6 resonator mode (which is obviously 

distorted by the presence of the shield and the substrate). The third 

(Fig. 5.17), with fo = 20.01 G H z ,  can be classified as the TE02s mode 
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Fig. 5.16 Magnetic field lines in a 4 = const. plane of the TE011+6 
mode of the resonator of Fig. 5.15. The resonant frequency 

Fig. 5.17 Magnetic field lines in a 4 = const. plane of the TE026 
of the resonator of Fig. 5.15. The resonant frequency 
£0 = 20.01 GHz. 

mode 
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Fig. 5.18 Magnetic field lines in a 4 = const. piane of the TE021+6 
mode of the resonator of Fig. 5.15. The resonant frequency 
£0 = 26.25 GHz. 

(observe the small difference in the resonant frequencies of this mode 

and the previous one). Finally, the mode of Fig. 5.18, which has the 

resonant frequency fo = 26.25 GHz, can be classified as the TE021+6 

mode. All higher modes of this resonator are leaky (propagating). 

The contours in Figs. 5.15 through 5.18 were obtained by plotting 

the pE (p,z) = const. lines over the resonator cross section. In the 
# 

case of the #-independent TE modes, these contours also represent the 

magnetic fields lines, because the H-field is proportional to the gradi- 

ent of pEd [6]. In fact, we have in this case 

The solid and dashed lines in Figs. 5.15 through 5.18 indicate, re- 

spectively, that the magnetic field lines are directed clockwise or 

counter clockwise with respect to the center of the corresponding 

vortex. The increase in density of the lines indicates the increase in 

the field magnitude. 
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5.8 8 
Having reviewed the major rigorous analysis methods for both 

shielded and open DRs, we are now in a position to discuss their merits 

and shortcomings. In the case of shielded resonators, two competing 

techniques have emerged, which are applicable to both axisymmetric 

(m = 0) and hybrid (m 2 1) modes: the radial mode-matching method (Sec. 

5.2) and the axial mode matching method (Sec. 5.3). For simplicity, we 

will refer to these methods in the following discussion as the radial 

and axial methods, respectively. When applied to a typical DR in a 

cylindrical cavity (Fig. 5.1), each of these two methods will give suf- 

ficiently accurate results, but one of them may require less effort than 

the other. Systematic convergence studies comparing various techniques 

have not appeared in the literature, so we have little guidance in this 

respect. As was discussed in Sec. 5.2, the radial method suffers from a 

relatively slow convergence for modes with a strong axial component of 

the electric field, which is singular at the edges of the DR [13,15]. 

We may speculate that similar difficulty will be encountered in the axi- 

al method for modes with strong radial component of the electric field. 

The source of the difficulty seems to be the fact that in both methods 

we seek to represent potentially singular functions in terms of continu- 

ous waveguide modes. 

The relative efficiency of these methods is also likely to vary from 

case to case, i.e., what is the "best" method for a particular DR may 

not be as good when the dimensions of the resonator are changed. For 

example, the axial approach is not applicable to the case of a DR in a 

parallel-plate waveguide, and we expect it to be inferior for large 

values of c/h (Fig. 5.1). In this case, many cylindrical waveguide 

modes (i.e., many terms in the series (5.92)) in each partial region 

will be required to represent the field in the resonator accurately. By 
a similar argument, we conclude that the axial method would be preferred 

if h/c -P m (however, this situation does not appear to be very common). 

The convergence of the field representations in the partial regions 

is not the only factor determining the efficiency of the given method. 

The computational effort will also strongly depend on the number of 

partial regions required by each method. In the case of the particular 

DR shown in Fig. 5.1, there are three regions for both methods. We 

note, however, that adding another layer of dielectric (a spacer, for 
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example) or another DR (to form a double resonator) will not increase 

the number of partial regions in the radial method, but it will add one 

or more regions in the axial approach. Therefore, taking the number of 

partial regions as the sole criterion, we would choose the radial method 

for a double resonator, and the axial method for a ring resonator. 

Another important factor in comparing the two mode matching tech- 

niques is the kind of the transcendental eigenvalue equation which one 

has to solve. In the radial method, this equation involves trigono- 

metric functions, while in the axial approach it contains Bessel 

functions. Since the trigonometric equation is well understood (see 

Appendix 5.B), the former method appears to have an edge over the latter 

in this respect. This is particularly true for ring DRs, where the 

eigenvalue equation is extremely complex in the axial method. There is 

also the issue of the possible occurrence of complex-valued propagation 

constants in some partial regions, which discouraged some researchers 

[19,23] from using the axial method in the case of hybrid modes. How- 

ever, Zaki and Chen [ a ]  obtained excellent results by this technique, in 
spite of the fact that they only searched for real roots. 

In the case of 4-independent modes (m = 0) of shielded resonators, 

there are several other rigorous methods at our disposal, in addition to 

the two mode matching techniques already discussed. Hence, there is the 

Galerkin-Rayleigh-Ritz method (Sec. 5.1), the differential mode matching 

method (Sec. 5.3), the finite-element and finite-difference methods 

(Sec. 5.4), and the Green's function - integral equation methods (Sec. 
5.6). Depending on the problem considered, some of these methods may 

have advantages over the axial or radial mode matching techniques. For 

example, the finite-element method usually offers more flexibility in 

modifying the structure, which is important in the design process. The 

principles involved in this method are quite simple (Sec. 5.4), and most 

of the difficulties are relegated to the programming stage. Usually, 

hundreds of finite elements must be employed, hence the efficiency of 

this technique depends to a large degree on the availability of 

sophisticated subroutine packages, which exploit the sparseness of the 

matrices. 

It is perhaps worth mentioning that the finite-element method and 

the Galerkin-Rayleigh-Ritz method of Sec. 5.1 are closely related 

through the use of the same variational principle (the Rayleigh-Ritz 

procedure). As a result, both methods always overestimate the resonant 
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frequencies, i.e., they provide upper bounds for the true resonant 

frequencies. In contrast, the mode matching methods and the Green's 

function method always underestimate the true resonant frequencies, 

i.e., they provide the lower bounds. In the case of the Green's 

function method [45,46], this is the consequence of it being related to 

the Weinstein variational method of intermediate problems, which is 

known to yield underestimated eigenvalues [51]. 

The Green's function technique [45,46] does enjoy one important 

advantage over the mode matching methods: owing to the fact that the 

partial regions in this method are always bounded by perfectly con- 

ducting (PEC or PMC) walls, there always exist two different, but 

equivalent, representations of the Green's function in each region. 

Hence, one can pick a representation with better convergence properties 

for a particular geometry, or the representation, which leads to a 

simple eigenvalue equation. However, the determination of the Green's 

functions, particularly for more complex resonators, tends to be diffi- 

cult. This is probably the reason why these methods have only been 

applied to axisymmetric cases. 

For isolated DRs (i.e., DRs in free space), the available rigorous 

techniques include the integral equation method (Ch. 6), the mode- 

matching/Rayleigh-Ritz method (Sec. 5.3), and the perturbational methods 

(Sec. 5.4). The first two methods have been employed to determine the 

axisymmetric, as well as hybrid, modes of pillbox resonators, and both 

can be extended to treat rotationally symmetric DRs of arbitrary cross 

section. No systematic studies of the relative efficiency of the two 

methods are available. Both are computationally expensive, as they lead 

to full matrices with elements determined by numerical integration. 

Since the integral equation method employs subsectional basis functions, 

it will typically result in a matrix of larger size than the mode- 

matching method. On the other hand, this method is not plagued by the 

convergence problems encountered in the mode-matching technique. 

The perturbational methods (Sec. 5.5) are based on the asymptotic 

expansion of the fields in terms of the inverse powers of ar, and are 

only accurate in the limit as a -+ -. The importance of these methods 

lies in the fact that they are semi-analytic in nature and explicitly 

give the dependence of various parameters on a The numerical part 
r' 

involves either an iterative solution of a system of partial differ- 

ential equations in an infinite domain, or a solution of an integral 
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equation over the DR cross section. The numerical solution, however, 

does not have to be repeated for every new value of rr. The pertur- 

bational methods have only been applied to the axisymmetric modes. For 

the commonly encountered values of r they offer accuracies comparable r '  
to that achieved by other methods described here only if higher-order 

correction terms are included. 

We remark, in conclusion, that the survey of rigorous analysis 

methods of DRs presented here is not meant to be exhaustive, and that, 

in view of the vast literature of the subject, some omissions are 

unavoidable. Nevertheless, we hope that the content of this chapter is 

representative of the available techniques, and that it will serve as a 

useful introduction to the rapidly developing discipline of dielectric 

resonators. 
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Appendix 5.A DERIVATION OF THE EIGENF'UNCTIONS AND EIGENVALUES 

OF THE OPERATORS D: AND D: 

The mode matching procedure described in Sec. 5.2 is valid for 

partial regions with any number of dielectric layers provided that the 

eigenvalues X and the corresponding eigenfunctions Z for both the TM 
n n 

and TE cases are available. In this appendix, we solve the eigenvalue 

problems (5.22) and (5.46) in the case of a partial region with three 

dielectric layers (Fig. 5.2), which will allow us to consider a die- 

lectric resonator on a substrate (Fig. 5.1). The results can be readily 

specialized to the simpler case of a region with two layers, such as 

partial regions 1 and 3 in Fig. 5.1. 

We first turn attention to the eigenvalue problem (5.22). Since 

within each dielectric layer the eigenfunctions will have different 

functional forms, it is convenient to introduce the notation: 

where ce are normalization coefficients chosen to render the eigen- 
n 

functions orthonormal with the inner product (5.23). It is now easy to 

see from (5.22a) that in the kth layer, where k = 1,2, or 3, the 

function zZk must satisfy the equation: 

where ck is the relative dielectric constant of kth layer (cf. eq. 

(5.24)). In view of (5.22b), 2fi1 and ZZ2 must also obey the boundary 

conditions: 

d z e  - 0  for z = 0  
dz nl - 

d Ze dz n3 = 0 for z = h 
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From (5.16a) and (5.16b), we see that the continuity of tangential 

magnetic field across the interfaces between the dielectric layers 

demands that 

Similarly, in v ,iew of (5.17a) and (5.17b), the continuity of th 

tangential electric field requires that 

If we define, for notational convenience, 

2 
7Zk = J k0Ek + A; 

we can readily construct the functions zZk as 

ze (z) = El C O S ~ ~ ~ ~  nl 

where we also defined 
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Written in this form, the functions Ze explicitly satisfy all the nk 
required conditions except for (5.A8). If we subject (5.AlOb) and 

(5.AlOc) to (5.A8) and introduce the notation: 

we obtain 

which is equivalent to 

This transcendental equation must be numerically solved for the 

eigenvalues Xe. The corresponding eigenfunctions are thus given by n 
(5.A1), where ZEk are defined by (5.A10). From (5.23) and (5.24), the 

normalization coefficients are found as 

e 1 e 2  2 e  a h  
C = 7 sin yn1hl {%[I + cot27:1h1] + + cot 

(7z1) ('n2 ) 

The eigenvalue problem (5.46) can be solved by a procedure similar 
h to that given above. Hence, if we introduce functions Znk by analogy to 

(5.A1), we will find from (5.46a) that they must satisfy (5.A2). The 

boundary conditions (5.46b) dictate 



DIELECTRIC RESONATORS 

From (5.41a) and (5.41b), we see that the continuity of the tangential 

magnetic field across the interfaces between the dielectric layers 

demands that 

while the continuity of tangential electric field components, given by 

(5.42a) and (5.42b), requires that 

We can easily construct the functions Z h 
nk as 

h 
h sinrnlz z (z) = 7 nl 

'nl 

h h 
h cosrnlhl cosm2h2 z (z) = h I h 
n3 h [Lanan tan~;~h~ - 1 sinrn3(h - z) (5.A22c) 

TI3 C0Sm3h3 

where we introduced 

These functions satisfy all the required conditions except for (5.A21) 
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If we introduce 

* h 
h 

t a n  n = tanTh n3 h 3 

'n3 

and subject z:~ and t3 to (5.A21). we obtain 

which can be written as 

Solving this transcendental equation yields the eigenvalues Xh The 
h 

n' 
normalization constants ch which make Zn(z) an orthonormal set with the n 
inner product (5.47) are found as 

h2 2 h ch n = 2 cos2P nl h 1 (1 + tan21!lhl) + (1 + tan en] 
('n2 ) 

The solution of the transcendental equations (5.A14) and (5.A26) for 

the eigenvalues Xe and A:, respectively, is discussed in Appendix 5.B. n 
It is of interest to point out that by following a procedure similar 

to that given above we could, with little extra effort, find the eigen- 

values and eigenfunctions for a partial region with the lower PEC wall 

(Fig. 5.2) replaced by a perfect magnetic conductor (PMC). This would 

allow us to analyze symmetric resonators more efficiently by separately 

considering modes that are even and odd in z. This would also give us 

the capability of analyzing symmetric double resonators. 
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Appendix 5.B SOLUTION OF THE EIGENVALUE EQUATIONS 

We discuss in this appendix the solution of the transcendental 
h equation (5 .AU) and (5 .AX) for the eigenvalues A: and An, respective- 

ly. Equations of this type, which are commonly encountered in the 

analysis of inhomogeneously filled waveguides, must be solved numeri- 

cally. In view of the fact that the transcendental functions involved 

have poles interspersed between the zeros, it is rather difficult to 

write a reliable computer program for the computation of the eigen- 

values. As Maystre et al. 1171 point out, missing just one eigenvalue 

can lead to completely erroneous final results in the mode-matching 

method. These authors, who only consider the TE case, describe a 

systematic procedure for the solution of (5.A26). which is, however, 

more complicated and less efficient than the procedure given below. 

Referring to Fig. 5.2, we assume that the middle layer has the 

highest dielectric constant, i.e., c2 > el and c2 > c,,. Since in the 

mode matching procedure the middle region will correspond to the high-c 

dielectric sample, this condition will be satisfied in most practical 

cases. 

Turning attention to the solution of (5A.14), we consider the 

integral : 

where, in the integration by parts, the integrated terms vanish in view 

of (5.22b). (Here, as elsewhere in this chapter, the prime denotes a 

derivative with respect to the argument.) Evidently, since the 

eigenfunctions Ze are real, I: < 0. On the other hand, by using (5.22a) n 
we can express Ie as n 

Hence, in view of (5.24), we obtain the result: 
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which proves the important property of the eigenvalues [17]: 

Since (5.22) has an infinite number of real distinct eigenvalues, we 

conclude that, at most, a finite number of them will be negative, as 

illustrated in Fig. 5.B1. 

finite number 
of negative roots I 

Fig. 5.B1 Distribution of eigenvalues in the radial 
mode-matching method 

1 - a 

I - - 

t "  A 2  
2 

- k  r . o E 

The important consequence of (5.B4) is that 7;2 is always positive 

real (cf. (5A.9)). Hence, it will be convenient to express ye and nl 
-yz3 in terms of ye as n2 

a a - - - 
A3 A, A, 

- " .  
infinite number 

of positive roots 
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Referring to (5 .All) and (5 .A12), we observe that although -ye and -ye nl n3 
may be imaginary, ae and qe are always real. Thus, (5.A14) is equiva- n n 
lent to 

€2'113 tanye arctan [* tan-y:lhl] + arctan (4 n3h3] 
€ 1 ~ ~ 2  9%2 

With -yzl and rz3 given by (5.B5), (5.B7) is a transcendental equation 

for -yz2. For values of re at which 7ii, i = 1,3, are imaginary, we n2 
replace in (5.B7) -yzitanyzihi by -Iriil tanhI7zihil . Since arctan is a 

multivalued function with the principal branch having values in the 

range (-x/2, r/2), we also need a criterion of branch selection in 

(5.B7). A simple analysis indicates that mx should be added to the 

principal value of the arctan, if 

With this choice, the expression on the left side of the equation (5.B7) 

is, for each n, a monotonically increasing function of -ye with only one 
n2 

zero, which can easily be computed by the secant method [12]. The 

corresponding eigenvalue can then be found from 

It appears that at least one of the eigenvalues Xe will be negative at 
n 

all frequencies (see Fig. 5.B1), which means that the corresponding 

radial mode is always propagating. Hence, the dominant mode in the TM 

case does not possess a low-frequency cutoff. This has been proved by 

Felsen and Marcuvitz [52] in the case of two dielectric layers. 
h The TE eigenvalues, An, can be found from (5.A26) by a procedure 

analogous to that given above. By following the steps leading to (5.B6) 

and (5.B7), we obtain in this case 
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h h  
an + + l$h2 = ns . n = 1.2. . . .  

and 

Given n, equation (5.811) can be solved for T;2 by the secant method and 

the corresponding eigenvalue X~ can be determined from an equation 
n 

analogous to (5.B9). It may happen in the present case that there are 

no negative eigenvalues, hence the TE radial modes possess a low- 

frequency cutoff. It may also be recognized that (5B.11) is closely 

related to the resonance condition (4.74), utilized in the computation 

of resonant frequencies of the two approximate DR models described in 

Ch. 4. 
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Chapter 6 
INTEGRAL EQUATION TECHNIQUES 

Allen U! Glisson 

6.1 Introduction 

In practical applications a dielectric resonator is expected to 

operate within a given frequency range and the electromagnetic field in 

the vicinity of the resonator is expected to exhibit behavior particular 

to the desired mode of operation (often TE 016). One of the disad- 

vantages associated with the use of dielectric resonators, however, is 

chat one may find resonant frequencies of undesired modes in proximity 

to the resonant frequency of the desired mode. It is, therefore, of 

great practical importance to be able to determine the resonant frequen- 

cies and field patterns of the unwanted modes of a resonator, as well as 

those of the desired mode, so that proper operation of, and coupling to, 

the resonator can be obtained. The proximity of the resonant frequen- 

cies and the field patterns of the various modes are, of course, influ- 

enced by the surroundings of the resonator, such as metal cavity walls, 

metal tuning screws, or dielectric tuning rods. If the resonant 

frequencies and field patterns of the resonator structure can be relia- 

bly and accurately computed, it should be possible to determine the most 

appropriate way to modify the environment of the resonator so as to 

alter the resonant frequencies of the interfering modes or to suppress 

the excitation of these modes. 

One approach to the analysis of dielectric resonators that has the 

potential to provide such information under a wide variety of circum- 

stances is a surface integral equation (SIE) approach. In this chapter 

we present a description of a very accurate numerical procedure 

Much of the material in this chapter is adapted, with permission, from 
papers appearing in f 
(references [19] and [22]). 01983 IEEE. 81984 IEEE. 
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developed at the University of Mississippi for the analysis of die- 

lectric resonators that is based upon a SIE formulation. The method 

described here has been applied to compute resonant frequencies and Q 

factors due to radiation for rotationally symmetric, isolated dielectric 

resonators with a high degree of accuracy. It has also been used to 

compute the electric and magnetic field distributions associated with 

each resonant mode. The procedure can be generalized in several ways to 

treat more complex geometries as well. 

Many different approaches to the analysis of dielectric resonators 

have been described in the literature [l-211 and some of these methods 

are described briefly in preceding chapters of this book. Some of the 

methods are based on simplifications of the desired geometry, such as 

the introduction of a magnetic wall (e.g., [1,2,5]). In the method of 

Itoh and Rudokas approximations are used for the fields for a particular 

geometry [6], while Van Blade1 has employed asymptotic expansions valid 

for high permittivity materials [3]. Still other methods, such as those 

of Jaworski and Pospieszalski [9] and Tsuji et al. [16], represent 

rigorous formulations for particular geometries which are solved numeri- 

cally. Until recently, methods utilizing rigorous formulations had been 

presented only for resonator modes having no azimuthal variation (modes 

with first subscript m = 0, e.g., TE ) and were applicable only to 
O ~ P  

resonators which conform to constant-coordinate surfaces in cylindrical 

coordinates. Results for some of the hybrid electromagnetic modes have 

been presented in [13], [19], and [20]. 

In this chapter we utilize a surface integral equation formulation 

and the method of moments for the analysis of dielectric resonators. 

This approach may be used not only to determine resonant frequencies and 

Q factors, but also to compute electromagnetic field distributions in 

the vicinity of the resonator [19,22]. A general discussion of surface 

integral equation formulations can be found in [23], while method of 

moments procedures are described in [24]. The numerical method is ap- 

plied here to dielectric bodies that are situated in open space and are 

rotationally symmetric, but which may have arbitrary cross sections. 

All resonant modes, including the hybrid modes with m # 0, can be in- 
cluded in the analysis. The SIE approach offers several computational 

advantages over finite difference equation or volume integral equation 

approaches, particularly when the resonator is not enclosed in a metal 

shield. The volume integral equation (VIE) approach, however, can be 
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implemented in a similar fashion (compare, for example, [25] and [26]). 

A VIE approach would retain most of the advantages of the SIE approach 

for open resonators and would permit study of resonators consisting of 

an inhomogeneous material. We employ the SIE formulation for resonators 

made of a homogeneous material because fewer unknowns are generally re- 

quired for the numerical solution than for a VIE solution. Both the VIE 

and the SIE methods also admit to further extensions which might include 

complete or partial metal shields, additional resonators, tuning screws, 

etc., which are rotationally symmetric and have the same axis of symme- 

try, as well as extensions to include some non-rotationally symmetric 

bodies [27]. For example, one should be able to accurately model cou- 

pling between a microstrip transmission line and an adjacent dielectric 

resonator using these methods, although the solution would be more com- 

plex than that presented here. 

In the next two sections we describe the use of the equivalence 

principle in the formulation of the SIE for the dielectric resonator. 

In Sec. 6.4 the method of moments is applied to the surface integral 

equation to obtain a homogeneous system of simultaneous equations in 

which the unknowns are the coefficients of expansion functions used to 

represent the equivalent surface currents, which are actually just com- 

ponents of the electric and magnetic fields tangential to the body 

surface. The procedure used to determine resonant frequencies and Q 

factors by locating the zeros in the complex frequency plane of the 

determinant of the homogeneous equation set is described in Sec. 6.5. 

Numerical and experimental results for resonant frequencies and Q 

factors are presented in Sec. 6.6, along with a universal mode chart for 

a particular cylindrical resonator. 

Once a resonant frequency for a particular resonator is found, one 

can compute the actual field structure for the mode and assign an ap- 

propriate name and set of mode indices, such as TE 016. In the remaining 

sections of this chapter, we briefly describe the procedure used to com- 

pute the equivalent surface currents and the field structure for the 

resonator. The procedure for determining the equivalent surface 

currents is presented in Sec. 6.7. Computation of the equivalent 

surface currents is a prerequisite for calculation of the fields, but it 

also provides a relatively rapid means of preliminary mode identifi- 

cation, as is indicated in Sec. 6.8. The use of the equivalent currents 

in the computation of the fields inside and outside the resonator is 
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described in a Sec. 6.9. Knowledge of the actual field distribution 

permits accurate mode identification and is desirable for designing 

better mechanisms for coupling to tKe resonator or for the design of 

structures to suppress unwanted modes. A catalog of field plots is pre- 

sented in Sec. 6.10, along with an indication as to how the plots may be 

used in the design process. Finally, in Sec. 6.11 we briefly discuss 

the application of the SIE approach to complex resonator shapes and to 

resonators in environments other than isolated space. 
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6.2 

In this section we apply the equivalence principle as described by 

Harrington [28] to develop equivalent mathematical models for the die- 

lectric resonator which lead to the formulation of a surface integral 

equation characterizing the resonator. The models for a resonator in 

open space are developed by considering the situation in which a homo- 

geneous dielectric body with surface S and unit surface normal : is im- 
mersed in a homogeneous medium as shown in Fig. 6.1. Regions 1 and 2 

shown in the figure designate the regions exterior and interior to S, 

respectively, and are characterized by media parameters (p o ) and i*e;l 1 
(p2,e2,a2). The fields in regions 1 and 2 are given by ( E  ,B ) and 
( E , & , ) ,  respectively. 

S S (E ,H ) 

REGION I 

Fig. 6.1 Homogeneous dielectric body located in an infinite 
homogeneous medium 

Many different situations can be constructed via the equivalence 

principle in which the field in some region of space is equivalent to 

the field in the same region of the original situation of Fig. 6.1. 

Particularly useful equivalent situations for the development of an SIE 

model are those in which the field in one of the regions, either region 

1 or region 2, is equivalent to the field which would exist in that 

region in the original situation, but in which both regions consist of 

the same uniform material. An equivalent model for region 1 is shown in 

Fig. 6.2(a). We begin construction of the model by delineating a 

phantom, or imaginary, surface S in a homogeneous medium having the 
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PHANTOM 
SURFACE S 

Fig. 6.2(a) A situation which is equivalent to the original situation 
of Fig. 6.1 for an observation point in region 1 

constitutive parameters (pl,~,ul) of region 1. The phantom surface is 

chosen to coincide with the position of the original body surface S in 

the original situation of Fig. 6.1. To create a situation equivalent to 

that of Fig. 6.1 in region 1, the field exterior to S must be chosen to 

be ($,f). The field interior to S in Fig. 6.2(a) should be a source- 

free, Maxwellian field, but is otherwise arbitrary. The zero field is a 

convenient choice. If the fields we have chosen for this equivalent 

situation are to satisfy Maxwell's equations at the phantom surface S, 

however, it is necessary to include equivalent electric and magnetic 

surface currents, J = x !!S and El = ES x 5 ,  to support the jump in 1 
the field across S. With reference to uniqueness principles, we are 

then assured that the currents J1 and M radiate in homogeneous space to -1 
1 1  produce the fields indicated in Fig. 6.2(a). The field (E ,Y ) anywhere 

in the homogeneous space of Fig. 6.2(a) may be computed from knowledge 

of J1 and M1 by using (6.1) and (6.2) below (with i = 1) and the 

homogeneous-region electric and magnetic vector and scalar potentials: 

where the potentials are defined by the surface integrals: 
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with 

In (6.1) to (6.7), a time dependence of exp(jwt) is assumed and 

suppressed. Vectors locating the observation and source coordinates in 

a global coordinate system are r and r ' ,  respectively, and the wave 
numbers of the homogeneous media indicated in Figs. 6.2(a) and 6.2(b) - 
are defined by ki = wJpici, i = 1,2. These equations are valid for 

lossy media (o. # 0) as well, if one simply interprets c in the 
I. i 

equations as the complex permittivity (c - jo/o) . The quantities pe and 
i 

p; appearing in (6.5) and (6.6) are the equivalent electric and magnetic 

surface charge densities, and are related to the surface currents 

through the continuity equations: 

1 1  When the observation point E is in region 1, the field (E ,H ) computed 
via (6 .l) and (6.2) is (~~,f), which is the correct field for region 1 

in the original situation. For r in region 2, (6.1) and (6.2) will 
1 1  yield zero for the field (E ,H ) .  The situation shown in Fig. 6.2(a) 

is, therefore, equivalent to the original situation of Fig. 6.1 when the 

observation point r is located in region 1. 
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Of course, (6.1) and (6.2) are useful to determine (gS,HS) in region 

1 only if we know J1 and MI, as these quantities are the sources of the 
potential functions used to compute the field. We do not yet have suf- 

ficient information to determine J and M1, however, since these -1 
currents are defined in terms of the tangential components to S of the 

unknown field (ES,HS). To obtain the required additional information, 

we complete our model development by constructing a situation which is 

equivalent to the original situation in region 2 (the interior of the 

dielectric body). Such an equivalent situation is shown in Fig. 6.2(b). 

PHANTOM 
SURFACE S 

A' 
/-- - A 

/ f i  
X (0,s) 

\ 

I / 
I REGION 2 ,/ 
\ / 

REGION I 
--_ - 

Fig. 6.2(b) A situation which is equivalent to the original situation 
of Fig. 6.1 for an observation point in region 2 

The equivalent model for region 2 is constructed in a manner analo- 

gous to that for region 1. The phantom surface S is placed in a homo- 

geneous medium having constitutive parameters of region 2 and the field 

interior to S is chosen to be the correct field @,HI, while a con- 

venient choice for the exterior region is the zero field. Equivalent 

surface currents J2 = (-6) X B and M2 = E x (-6) are included to support 
2 2 the jump in the field at S. The field (E ,H ) may then be computed 

anywhere in the homogeneous space of Fig. 6.2(b) using (6.1) and (6.2) 

as before, but with i = 2. For an observation point z in region 2, the 
2 2 

field (E ,H ) computed in this manner is (E,H), which is the correct 
field for region 2 in the original situation. The zero field is ob- 

tained when the observation point r is in region 1. The situation shown 

in Fig. 6.2(b) is, therefore, equivalent to the original situation of 
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Fig. 6.1 when the observation point x is in region 2. J2 and M2, how- 

ever, are not yet useful because they are defined in terms of the 

unknown field ( E , B ) .  In the next section, boundary conditions are ap- 

plied at S to develop equations Which can be solved for all the equiva- 

lent currents. 
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6.3 Formulation of the Surface Inteeral Eauations 

The two equivalent situations depicted in Fig. 6.2 may be used to 

compute the correct fields in the appropriate regions once the equiva- 

lent currents Ji, Mi, i = 1,2, are known. The equivalent situations, 

rather than the original material body configuration of Fig. 6.1, are 

employed for the computation of the fields because they enable one to 

use the homogeneous-region potential functions defined in (6.3) to 

(6.6). The current sources for these potentials are defined in terms of 

the unknown fields (E ,H) and (ES ,us) . These unknown fields , however, 
must satisfy the boundary conditions 

at the surface S in the original problem. Application of these con- 

ditions to the definitions of the equivalent currents eliminates two of 

the equivalent currents as unknowns: 

where for simplicity we have defined the unsubscripted currents J and M. 

The fields in (6.10) and (6.11) can be expressed as functions of the 

equivalent currents through (6.1) and (6.2), so the boundary conditions 

also lead to the equations: 

or, using (6.12), (6.13), and the linearity of the fields, 
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where the dependence of the fields on the currents and on the obser- 

vation point is explicitly indicated. In (6.14) and (6.15) the fields 

(E,B) and ($,$) must be evaluated in the limit as g approaches S from 

the inside and from the outside, respectively. The exterior-region 
S s field (g  ,I! ) can be computed via the equivalent situation of Fig. 

6.2(a) using (6.1) through (6.9) with i = 1 and with J1,M1 replaced by 

J,&. The field (g,H) appearing in (6.14) and (6.15) represents the 

negative of the true interior-region field and can be computed similarly 

via the equivalent situation of Fig. 6.2(b) using (6.1) through (6.9) 

with i = 2 and J ,M replaced by J,Y. Equations (6.14) and (6.15) can 2 2 
then be represented as two coupled integral equations which are valid on 

the surface S and have the form 

where the subscript "tan" denotes the components of the vectors tan- 

gential to the surface S and where the sources of the potentials are the 

unsubscripted currents J and PI and their associated surface charge 
densities. 

The coupled equations (6.16) and (6.17) can be solved numerically to 

obtain the equivalent currents J and a. Because the equations represent 

source-free field solutions for the geometry of Fig. 6.1, however, so- 

lutions will exist only for a set of discrete (complex) frequencies. 

Once these frequencies are determined, the equations may be solved nu- 

merically for the modal current distributions J and M, and these 
currents can in turn be used to compute the field distribution in either 

region 1 or region 2 using the equivalent situations shown in Fig. 6.2. 
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6.4 rJumerical Solution of the Surface Integral Equations 

For the analysis of dielectric resonators, it is convenient to 

restrict the class of geometries to be considered to those involving 

rotationally symmetric dielectric bodies (bodies of revolution). Subse- 

quent comments in this chapter are, therefore, applicable to a body of 

revolution which is formed by rotating a planar curve C ,  the so-called 

generating arc, about an axis which is chosen to be the z-axis of a 

Cartesian coordinate system (Fig. 6.3). As in Fig. 6.1, region 1, 

exterior to the body, and region 2, interior to the body, are character- 

ized by media parameters (pl,cl,ul) and (p2,c2,u2), respectively. 

Surface coordinates (t,)) are introduced on S, where t is the arc length 

along the generating curve and ) is the azimuthal angle measured from 

the x-z plane. The components of the orthogonal right-handed triad of 

unit vectors, ( f i , & , f ) ,  are normal to S and tangent to the 4 and t 

Fig. 6.3 Geometry and discretization of 
homogeneous dielectric body of 
01983 IEEE) 

the generating arc for a 
revolution (reference [19], 
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coordinate lines, respectively. For numerical purposes, the generating 

arc is approximated by a sequence of linear segments as shown in the 

figure. 

The surface integral equation approach has been used by various 

authors for treating problems involving electromagnetic scattering by 

dielectric bodies of revolution [29-32). In this chapter we employ for 

the analysis of rotationally symmetric dielectric resonators the ap- 

proach presented in [32]. The basic numerical procedures used are the 

same as those employed for scattering problems and are described else- 

where 132-34). However, for completeness, as well as to aid in de- 

scription of the modal solution, the numerical procedures are briefly 

outlined in this section. 

To take advantage of the rotational symmetry of the body, we expand 

all currents and scalar Green's functions in Fourier series in 4. For 

example : 

where 

i 
The Fourier series expansion of the kernel G (t,t1,&4') is possible 

because the distance R is periodic in the variable (4-4'). The magnetic 

current M is expanded in a similar manner. Expansion of the source and 

field quantities in Fourier series leads to equations which can be 

decoupled with respect to the angular variation, so that each Fourier 

component pair (&(t),M (t)) can be computed independently. The Fourier 
7n 

component current pair (G(t),%(t)) can then be used to compute the 

associated electric and magnetic fields, which will also behave as 

exp(jm4). Furthermore, current components with Fourier index -m can be 

related to those with index m, and then combined to describe the "real" 
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field behavior (e.g., cos(md)). Because the currents for each index m 

are independent, we may solve the equations for a particular value of 

the Fourier index m, which amounts to choosing a particular azimuthal 

variation of the field in advance. 

While the variation of the currents (and fields) is specified in the 

6 direction in advance, their variation along the surface S in the t 
direction remains to be determined. We model the variation in the t 

direction by applying the method of moments to equations (6.16) and 

(6.17) to obtain (for the Fourier component m of interest) a set of 

simultaneous equations which may be represented in matrix form as 

where Z is the moment matrix and 11 > is a column vector containing the 
-m m 

coefficients of the surface current expansion for the mth Fourier 

component. The generating arc is approximated as a sequence of linear 

segments with the t-coordinate discretized as shown in Fig. 6.3 for 

application of the method of moments. The t variations of the orthogo- 

nal vector components J and J of electric current for the mth Fourier t 6 i i component are expanded in basis functions II (t) and lI (t), respective- t 6 
ly, where the superscript i now refers to the coordinates ti, rather 

than to the interior or exterior region, as follows: 

N N+1 
J (t) - f L J + E J~'II~(~) -m i=l i=1 4 4 

where 

( 0 , otherwise 

( 0 , otherwise 

The basis functions lI1(t) and lI1(t) are illustrated in Fig. 6.4 for a t d 
portion of a generating arc along which p is a constant (e.g., along the 

side of a cylinder). The expansion (6.23) is substituted into (6.18) to 
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AXIS OF 
REVOI 

c- 

GENERATING 
ARC 
/ 

i i 
Fig. 6.4 Basis functions lIt(t) and lId(t) for a portion of generating 

arc along which p is constant (reference [19], 01983 IEEE) 

obtain the full expansion in both the t and 4 variables for the surface 
current J on S. The electric charge density pe(t) m for the mth Fourier 

component is approximated from the continuity equation (6.8) as 

where, on the right side of (6.26), pu = ~(t,,), Ati = ti - ti-l , and 
lIi(t) = d(t), and where p J ~ , O  = pN+l J?sN+l = 0. Representations for 

6 O t  
and p: follow from (6.23) and (6.26) by replacing electric source 

quantities by the corresponding magnetic source quantities. 

Expansions for all the equivalent source quantities are substituted 

into (6.16) and (6.17). The result is a set of coupled integral 
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equations which depend on the unknown coefficients of the current 

expansions. A system of simultaneous equations, which may be solved for 

these coefficients, is obtained in the method of moments procedure by 

"testing" the coupled equations with a set of testing functions. For 

the body of revolution geometry of interest here, we choose the testing 

functions to be 

and 

At 
T = t - t  )e-"" 

q-1/2 

The t-components of (6.16) and (6.17) are tested with (6.27) (i.e., the 

t components of (6.16) and (6.17) are multiplied by the function in 

(6.27) and the resulting terns are integrated over the surface S), while 

the &components are tested with (6.28). The result is a set of simul- 

taneous equations of the form (6.22) for the mth Fourier component. 

Details of the application of the method of moments to obtain the moment 

matrix in (6.22) may be found in [ 3 3 ]  and [ 3 4 ] .  

Under the source-free conditions assumed for the analysis of the 

dielectric resonator, of course, the matrix equation (6.22) has a 

solution only when the determinant of the moment matrix Z is zero: 
-m 

The next step in the solution procedure is, therefore, to determine the 

particular values of complex frequency for which (6.29) holds. At such 

frequencies, the matrix equation (6.22) can be solved for the current 

coefficient vector IIm>, which represents the t variation of the surface 

current distribution having Fourier index m, or equivalently, of the 

distribution at the surface S of the tangential components of the 

electric and magnetic fields with Fourier index m. 



INTEGRAL EQUATION TECHNIQUES 

6.5 Co u a ' 

In this section we consider the problem of determining the frequen- 

cies at which solutions of (6.16) and (6.17) exist in the absence of 

impressed sources, i.e., the frequencies at which the source-free modal 

fields exist. This problem is analogous to the problem of determining 

the natural frequencies of a passive, lumped-element circuit, where a 

circuit "response" can exist even though the external voltage and 

current sources have been set to zero [35]. In the numerical analysis 

of the dielectric resonator, it corresponds to the determination of 

frequencies for which (6.29) holds. For the isolated resonator geometry 

indicated by Fig. 6.1, however, there will be no real frequencies at 

which source-free fields can exist, such as there are within perfectly 

conducting cavities, because energy must be lost in the form of radi- 

ation. Hence, (6.16) and (6.17) have no solution for real frequencies. 

The exponential decay in time of the fields due to radiation, however, 

can be included by defining the complex frequency: 

where w is the actual angular frequency of oscillation and o is related 

to the time decay rate of the field [35]. The symbol o used to denote 

the real part of the complex frequency in (6.30) is not to be confused 

with the conductivity o used in Fig. 6.1. The meaning of the symbol 

should be clear from the context in which it is used. 

When (6.30) is used, the time dependence of the field is assumed to 

be of the form exp(st) and is suppressed. The equations preceding 

(6.30) remain valid with the introduction of the complex frequency if 

one replaces the term jo by s everywhere it appears, including in the 
2 definition of the square of the wave number k (k2 = -(jw) PC) and in the 

complex permittivity if the medium is lossy. With the frequency gener- 

alized to be complex in this manner, source-free field solutions to 

(6.16) and (6.17) exist at discrete complex frequencies. These frequen- 

cies can be determined numerically by searching for the frequencies at 

which the determinant of the moment matrix Zm is zero as indicated in 
(6.29). The roots of (6.29) in the complex frequency plane are desig- 

nated by 
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where w is the resonant frequency of the mode (m,u) and a is the 
m , ~  m , ~  

decay time constant of the mode. The subscript u in this notation is an 

integer used to denote unique complex frequency values for which (6.29) 

is satisfied. For each value of m in (6.29), there will be solutions 

for u = l,2,3, . . .  These solutions each correspond to a different reso- 

nant mode. Once the electromagnetic field distribution is determined 

for a particular solution, the index v may be replaced by two subscripts 

(n and p) which denote the radial and axial behaviors of the field, if 

this is appropriate for the resonator shape under consideration (such as 

for a cylindrical resonator). The quantity a in (6.31) is inversely 
m,u 

proportional to the radiation Q factor for the mode (see also Ch. 2): 

The roots (6.31) of (6.29) may be found by searching in the complex 

frequency plane using one of several available search techniques. For a 

dielectric resonator, however, the search in the complex frequency plane 

for the roots of (6.29) can be made fairly efficient because the Q 

factor for the modes of interest is usually relatively large. Thus, it 

is generally practical to search along the imaginary axis (where s = j w )  

for crude values of the resonant frequency w (i.e., 2-f ) .  A plot 
m , ~  m , ~  

of the moment matrix determinant along the imaginary axis of the complex 

frequency plane is shown in Fig. 6.5 for a case in which the fields are 

azimuthally symmetric (m = 0). The dielectric resonator in this example 

is a cylindrical "pillbox" which has relative permittivity e = 35, 

radius a = 5 mm, and length h = 5 mm. The absolute value, the real 

part, and the imaginary part of the determinant are plotted for the 

Fourier component m = 0. For the numerical model in this example, the 

generating arc of the body of revolution is described by only 7 points 

(N = 5 in (6.23)), and the resulting matrix is of size 22 x 22. In the 

range between 2 GHz and 8 GHz the absolute value of the determinant in 

Fig. 6.5 shows two distinct minima, one at 5.1 GHz and the other at 

7.6 GHz. With the help of diagrams from Gelin et al. [ll], the two 

resonant modes can be tentatively identified as TE 
016 and TM016. 

Identification of modes on the basis of their field distributions is 

discussed in Sec. 6.10. 
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0.4 

-0.2 I I I I I 

Fig. 6.5 Moment matrix determinant for azimuthally symmetric Fourier 
component (m = 0) along the imaginary axis (s = j w )  of the 
complex frequency plane for a cylindrical dielectric resonator 
with er = 35, radius a = 5 mm, and h = 5 mm (reference [19], 
01983 IEEE) 

The use of relatively few unknowns, and hence a small matrix, as in 

the preceding example, provides a fairly rapid means of locating crude 

resonant frequency values. To determine more accurate values of the 

resonant frequencies, as well as the values of the corresponding Q 

factors, we must extend the search for roots of (6.29) off the imaginary 

axis of the complex frequency plane. In Fig. 6.6 is shown an example of 

the behavior of the moment matrix determinant along a straight line path 

that is perpendicular to the imaginary axis and begins at an imaginary- 

axis minimum of the determinant. It is observed that, while the abso- 

lute value shows a broad minimum, the real and imaginary parts almost 

appear to be two straight lines, each going through zero at a different 

point. This curve suggests that the real and imaginary parts of the 

determinant may each be approximated by a linear function of the complex 

frequency in the vicinity of the complex root. With this 
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Fig. 6.6 Example of moment matrix determinant along a path beginning at 
an imaginary-axis minimum of the determinant and proceeding 
along a constant-w cut in the complex frequency plane 
(reference [19], 01983 IEEE) 

approximation, it is possible to employ a simple iterative search 

procedure in which each iteration requires the evaluation of the moment 

matrix at only three points in the complex plane [36]. A simple two- 

point per step iterative procedure can also be implemented via a 

complex-plane Taylor series representation of the determinant. For 

efficiency, the iterative search may begin using only a few unknowns to 

model the resonator. As the search proceeds, the model accuracy may be 

improved by increasing the number of expansion functions for the equiva- 

lent surface currents, so that a more accurate resonant frequency value 

is obtained. Since each point in the search is obtained by computing 

the determinant of, for example, a 22 x 22 (or larger) matrix, the need 

for economy of computer time is evident. It has been found that three 

to five iterative steps are usually necessary for an accurate determi- 

nation of the complex root. 



INTEGRAL EQUATION TECHNIQUES 279 

The dependence of the resonant frequency and the Q factor on the 

accuracy of the numerical model is indicated in Fig. 6.7. This figure 

shows the convergence of the computed resonant frequency and Q factor as 

the number of points modeling the generating arc (N + 2) is increased 
from 7 (22 unknowns) to 37 (142 unknowns). The results are plotted 

versus 1/(N + 2). for the TEOl6 resonance of the same resonator as in 

the previous example (c = 35, a = 5 mm, h = 5 mm). One observes that 

Fig. 6.7 Resonant-frequency and Q-factor values as functions of a 
number of unknowns used in the numerical model for a 
cylindrical dielectric resonator with cr = 35, a = 5 mm, and 
h = 5 mm (reference [19], 01983 IEEE) 

the resonant frequency and the Q factor show good convergence as N is 

increased. Note that the resonant frequency computed using N = 5 

differs by less than 1 % from the value of the resonant frequency which 

would be obtained by extrapolating the curves (dashed lines) to repre- 

sent an infinite number of points. The Q factor generally converges 

somewhat more slowly than does the resonant frequency, as is evident in 

Fig. 6.7. The extrapolated value of resonant frequency for N + agrees 

with Gelin et al. [ll] within 1 % ,  while the extrapolated value of Q is 

lower, coming closer to the values given by Verplanken and Van Blade1 

[ 4 ] .  The resonant-frequency and Q-factor values shown in Fig. 6.7 also 



280 DIELECTRIC RESONATORS 

agree well with the predicted values of Q = 40 and f = 5.1 GHz given by 

Tsuji et al. [16]. 

As previously indicated, we may choose in advance the azimuthal 

variation of our solutions by picking the Fourier index m. If the index 

is changed to m = 1, we obtain the so-called hybrid electromagnetic 

(HEM) field solutions with variation exp(jq5). A plot of the determinant 

of the moment matrix along the imaginary axis (o = jw) of the complex 

frequency plane is shown in Fig. 6.8 for the case in which m = 1 and for 

the same resonator as in the previous example. The absolute value of 

the determinant has two apparent minima below 8 GHz, one at 6.3 GHz and 

another at 7.1 GHz. Based on mode charts for dielectric rod waveguides, 

such as those presented in Ch. 3, the two modes indicated by the 

determinant minima in Fig. 6.8 may be tentatively denoted as the HEM 
116 

and HEMl2& modes, where the hybrid modes of a dielectric resonator are 

Fig. 6.8 Moment matrix determinant for the Fourier component m = 1 
along the imaginary axis (s = jw) of the complex frequency 
plane for a cylindrical dielectric resonator with er = 35, 
radius a = 5 mm, and height h = 5 mm (reference [19], 431983 
IEEE) 
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denoted by HEM in accordance with the notation of Ch. 3. The first, 
mnP 

second, and third subscripts in this notation specify the nature of the 

azimuthal, radial, and axial variations, respectively. Generally, for 

the modes of interest encountered in dielectric resonators, the third 

subscript is smaller than unity and is denoted by the symbol 6. 

The search for complex roots of ( 6 . 2 9 ) ,  however, provides the in- 

vestigator only with the knowledge that a resonant mode exists at the 

complex frequency sm,". Identification of the mode number v (or the 

mode numbers n and p, if the resonator is cylindrical in shape) is 

another problem. Some use may be made of reference materials on similar 

resonators or, as above, of mode charts for other structures such as the 

dielectric rod waveguide. In a limited sense, one may also utilize the 

equivalent surface currents on the resonator or equivalently, the 

surface fields, to identify the mode corresponding to a particular reso- 

nant frequency. For a reliable mode identification, however, it is 

necessary to compute the detailed field distribution in and around the 

resonator. Discussions on the computation of the equivalent surface 

currents and the field distribution, as well as the use of these quanti- 

ties in the identification of modes, are presented in subsequent 

sections. Before proceeding to these topics, we present in the next 

section a comparison between numerical results for resonant frequencies 

and Q factors obtained via the procedures described here and some 

experimental results for isolated dielectric resonators. 
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6.6 Numerical and Ex~erimental Results 

Numerical and experimental results have been obtained and compared 

for a cylindrical "pillbox" dielectric resonator having relative 

permittivity er = 38, radius a = 5.25  mm and height h = 4.6 mm. The 

measured data were obtained using a network analyzer and the experi- 

mental set-up depicted in Fig. 6.9. The transmission method was used to 

obtain most of the data. The resonator was situated in a box padded 

with absorbing material to simulate the free-space environment and was 

electromagnetically coupled to semirigid coaxial cables by a small 

balanced loop and by a balanced dipole. The balanced arrangement was 

found to be essential for avoiding external currents on the cable 

shields, which caused serious difficulties at the beginning of the 

experimental investigation. 

HP 8620A 
SWEEP OSCILLATOR 

HP 8414A. 8410A 
POLAR DISPLAY, 
NETWORK ANALYZER 

HP 8743A EIP MODEL 545  
REFLECTION-TRANSMISSION MICROWAVE 

FREQUENCY COUNTER I PI UNIT 1 I 
CH. A CH. B 

Fig. 6.9 Block diagram of apparatus for measuring resonant frequencies 
and Q factors of isolated dielectric resonators using the 
transmission method 

COAXIAL- 
CABLE WITH 

BALANCED 
DIPOLE 

+COAXIAL CABLE WITH 
BALANCED LOOP 

ABSORBING 
MATERIAL 
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Computed values of the resonant frequencies and Q factors for the 

above resonator are shown in Table 6.1. These values have been obtained 

for the TEOl6 and the TMO16 modes with N = 16, which corresponds to an 

18-point model of the generating arc and 66 unknowns. The values for 

the HEM modes have geen obtained using a 27-point model for the reso- 

nator (N = 25; 102 unknowns). The computed and measured values of reso- 

nant frequencies of various modes agree to within about 0.5 % for the 

modes for which measured data were obtained. The agreement between the 

computed and measured values of Q factor is not quite as good. In the 

worst case (mode HEM216), the measured value of Q is about 38 % lower 

than the computed value when the transmission method is used for the 

measurement. As the transmission method is not very reliable for the Q 

measurement, the reflection method was also attempted. It proved to be 

difficult to obtain sufficient coupling to the coaxial line using this 

method, especially for the modes with a low Q factor. For the two modes 

where the reflection measurement was possible, the computed and measured 

values of Q agreed to within about 3 % for initial calculations using a 

resonator model with N = 11 (46 unknowns). Subsequent calculations [ 2 2 ]  

in which the more accurate resonator model was used (N = 25; 102 

unknowns), however, showed the higher theoretical Q value of 327 for the 

HEM216 mode indicated in Table 6.1. This value represents a difference 

of 13 % when compared to the measured value. 

Numerical computations show that the resonant frequency of the 

HEMll6 mode is 6.333 GHz, which is within the frequency range covered by 

Table 6.1. The computed Q factor of 30.7 for this mode, however, is 

significantly lower than that of the other modes. In spite of repeated 

attempts, accurate experimental observation of the resonance of the 

HEMll6 mode was not possible for the resonator in the simulated free- 

space environment, probably because of the difficulty in coupling to 

such a low-Q mode. Therefore, measured values for this mode are not 

included in the chart. It is worth noting here, however, that when the 

resonator is placed within a shielding enclosure, the HEMll6 mode is 

generally well-defined and is easily observed experimentally. Because 

of the low Q factor (high radiation loss) of this mode for an isolated 

resonator, one might consider the possibility of using a resonator 

operating in this mode as a radiating element. This idea is discussed 

further in a subsequent section. 
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The numerical procedure has also been used to compute a universal 

mode chart for isolated cylindrical dielectric resonators with cr = 38. 

The chart, which is shown in Fig. 6.10, provides resonant frequency 

information in terms of k a for several modes as a function of the 0 
resonator radius to height ratio a/h. In order to economize the 

computer time, the resonant frequencies for this chart were determined 

by simply tracking the minimum of the determinant for each mode on the 

imaginary axis of the complex plane as the geometry is changed. In 

addftion, an attempt was made to keep the number of points used to model 

the resonator generating arc to a minimum (13 points; N = ll), but it 

was necessary to increase the number of points for certain values of 

a h .  Such changes of N represent part of the reason for the slight 

kinks in the curves shown in Fig. 6.10. The kinks may also result from 

the difficulty in determining the "minimum" along the imaginary axis, as 

well as from the fact that the resonant frequency indicated by a minimum 

OTsuji, et al. 

Fig. 6.10 Universal mode chart for isolated cylindrical dielectric 
resonators with permittivity sr = 38 (reference [19], 01983 
IEEE) 
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on the imaginary axis is slightly different from the actual complex 

plane resonant frequency. 

Shown on the mode chart for comparison are three points taken from a 

curve computed for the TEOl6 mode by Tsuji et al. (201. The HEMll6 mode 

is omitted from this mode chart for two reasons. First, the minimum of 

the determinant for this mode is poorly defined on the imaginary axis 

because of its low Q, so that it was often overlooked in our "econo- 

mized" search process. Second, the experimental investigation did not 

confirm the existence of this mode. 

Table 6.1 COMPARISON OF COMPUTED AND MEASURED RESONANT-FREQUENCY AND 
Q-FACTOR DATA FOR A CYLINDRICAL DIELECTRIC RESONATOR WITH 
cr = 38, RADIUS a = 5.25 mm, AND HEIGHT h = 4.6 mm 

Measured 
Mode 

TE016 

HEM126 

TM016 

HEM216 

Measured 
(Transmission 

Method) 

Computed 

4.829 

6.333 

6.638 

7.524 

7.752 

Measured 
(Reflection 

Method) 
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6.7 Conmutation of Modal Surface Current Distributions 

When the surface integral equation approach is used to model a 

dielectric resonator, computation of the equivalent surface currents is 

a prerequisite for calculation of the field distribution in the vicinity 

of the resonator. Knowledge of the equivalent surface current distri- 

bution also provides a relatively rapid, but preliminary, means of mode 

identification when a resonant frequency is found, since the surface 

currents actually represent the electric and magnetic fields tangential 

to the body surface. Once a search in the complex frequency plane, as 

described in Sec. 6.5, has yielded a resonant frequency to a sufficient 

degree of accuracy, it is relatively easy to calculate the modal surface 

current distributions. The first step is to compute the moment matrix 

Z with the frequency at the newly found complex resonant frequency -m 
s . At this frequency, the determinant of the moment matrix is zero 
m,u 
and the homogeneous system of equations represented by 

must be satisfied, where 11 > is the vector containing the unknown coef- m 
ficients of the surface current expansions. Since the moment matrix 

determinant is zero, there is no unique solution for the coefficient 

vector ]I >. If the determinant has a simple zero, however, the rank of 
m 

the matrix will be 1 less than its order. In this case, one may choose 

the value for one of the coefficients of the vector 11 > and the re- m 
maining coefficients will be uniquely determined [37]. Whether the de- 

terminant has only a simple zero or not depends on the system geometry 

and on the operators from which the matrix is generated. For the die- 

lectric body of revolution and the combined integro-differential oper- 

ators used in (6.16) and (6.17), one would expect degeneracies in the 

surface current solution and in the electromagnetic field of the same 

type as those which exist within cylindrical cavities, i.e., those of 

the cos(md) and sin(m4) type. Such degeneracies would generally lead to 

multiple zeros of the moment matrix determinant. In the development of 

the moment method solution procedure in Sec. 6.4, however, we have 

effectively assumed that only one of these variations exists by speci- 

fying the relationship between the modes which vary as exp(jm4) and 

those varying as exp(-jmd). Thus, we expect the moment matrix Z to ,m 
have a simple zero. Inclusion of the remaining variation is easily 
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accomplished after the vector IIm> is computed, if desired. 

Since we assume that the determinant of the moment matrix has a 

simple zero at the frequency s it is convenient to employ a Gaussian 
m , ~ '  

elimination procedure to reduce the matrix and obtain a solution for 

I I d .  The last step in the reduction of a system of simultaneous 
equations in this manner leads to a scalar equation of the form: 

where M represents the number of equations in the system (and the total 

number of unknowns). Thus, iM is the last element in the vector 11 > m 
and, when the moment matrix is evaluated at a resonant frequency s m,v' 
the elimination process leads to am = 0. (In practice am is usually a 

very small non-zero value, due to round-off error, that is taken to be 

zero. Also, the element iM is not necessarily the "last" element in the 

original vector lIm> if pivoting is used in the Gaussian elimination 

process.) Since am = 0, (6.34) is simply a statement that iM may take 

on any arbitrary value and, hence, that there are an infinite number of 

solution vectors 11 > satisfying (6.33), which may be obtained by back m 
substitution. If, however, we choose an arbitrary value for iM, say 

i = 1, and begin the back substitution process, we obtain a unique M 
solution for the vector I1 > containing the coefficients of the surface m 
current expansion (unique for this particular choice of i ) .  M 

One problem which has been encountered during the computation of the 

current coefficient vector 11 >, when one directly generates the moment m 
matrix as described in [32-341, is that numerical instabilities may 

appear when large numbers of unknowns are used and higher-order modes 

are studied. These instabilities occur because the individual elements 

in the unknown surface current vector I1 > (as defined in 132-341) are 
m 

expressed in mixed physical units and because the rows of the moment 

matrix represent mixed physical units (because (6.16) and (6.17) do not 

have the same units). This mixing of units results in a moment matrix 

which is not as well-conditioned as it could be. Kajfez et al. have 

shown in (221 that a straightforward normalization of the moment matrix 

can significantly improve the condition number defined by Klein and 

Mittra for the matrix [38] and, consequently, remove or reduce the 

numerical difficulties associated with the computation of the modal 

surface currents. It is recommended that such a normalization procedure 

always be applied to the system of simultaneous equations (6.33). 
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6.8 Inter~retation of Modal Surface Current Distributions 

The modal surface current distributions represented by the coef- 

ficient vector 11 > are directly related to the tangential components of m 
the electric and magnetic fields at the surface of the body. Hence, for 

a particular root found in the complex frequency plane search, these 

distributions can serve as guides in determining the mode indices n and 

p, which represent the radial and longitudinal variations of the fields, 

respectively, for cylindrical resonators. As long as a resonator is 

"relatively cylindrical" in shape, the currents may be useful in de- 

termining indices n and p, even though the indices would begin to lose 

their correspondence to the radial and longitudinal directions. For 

non-cylindrical resonators, however, these two mode indices can be re- 

placed by the single index v ,  and in such cases the relationship of the 

surface current distribution to the mode index may not be a ~riori 

clear. The reader should recall that the mode index m in, for example, 

HEM represents the azimuthal variation of the field and is selected 
mnP 

via the testing functions defined by (6.27) and (6.28) in Sec. 6.4 

before the resonant frequency is found. The surface current distri- 

butions should be used only as an indicator for the remaining mode 

indices n and p, however. A precise determination of the mode indices 

should be made based on evaluation of the field distribution in the 

resonator as described in Sec. 6.10. 

The current coefficient vector (I > determined from the solution of m 
(6.33) at a resonant frequency actually represents four distinct surface 

current quantities. Thus, it is convenient to partition the vector in 

four column subvectors before normalization as 

where the subvectors correspond to the two vector components of quanti- 

ties related to the electric and magnetic currents on the surface. The 

subscripts and t in (6.35) denote the spatial vector components of the 

currents in the azimuthal direction and in the direction along the 

generating curve for the body of revolution, respectively. Figure 6.11 
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illustrates the orientation of the components of the equivalent electric 

surface current densities Jt and JO on various parts of a dielectric 

resonator which is cylindrical in shape. For a more general geometry, 

one should refer to Fig. 6.3. For the cylindrical resonator of Fig. 

6.11, however, note that Jt is parallel to the z-axis for points on the 

cylindrical surface, whereas on the two flat end faces of the resonator, 

the orientation of Jt corresponds to either the positive or negative 

radial direction. The J component is directed along the 4 coordinate d 
lines on any face. Similar comments apply to the equivalent magnetic 

surface current densities M and M 
t d .  

Fig. 6.11 Orientation of components of equivalent currents on surface 
of a cylindrical dielectric resonator (reference [22], 01984 
IEEE) 

The current coefficient vector 11 > is partitioned before normali- m 
zation as indicated in (6.35) for consistency with previous work [32- 

341. The subvectors 11 > and lK > appearing on the right side of (6.35) t t 
do not represent the surface current densities Jt and Mt directly. 

Instead, they actually represent coefficients of the expansion of the 

quantities 2rpJt and 2xpMt, where p is the radial distance to the 

current source in a cylindrical system of coordinates. Expansions for 

these quantities are used, rather than for the current densities Jt and 
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Mt, because their use simplifies the evaluation of the moment matrix. 

In addition, as has been indicated in the preceding section, the current 

vector 11 > should be normalized to improve the condition number of the 
m 

moment matrix. The normalization process, however, changes the physical 

units of some elements of the current coefficient vector. After 

computation of the current coefficient vector 11 >, it is, therefore, m 
desirable to rescale the vector into the unnormalized form of (6.35). 

Before attempting to interpret the results it is also convenient to 

convert the subvectors 11 > and IK > to vectors representing surface t t 
current densities by dividing the ith element in each subvector by 271p 

i 
for i = 1 to N, where pi is the radial coordinate of the ith point 

defining the generating arc, to obtain subvectors IJ > and IM >. t t 
The sample results displayed in Figs. 6.12 and 6.13 have been 

computed for a cylindrical dielectric resonator, such as illustrated in 

Fig. 6.11, with dimensions a = 5.25 mm, h = 4.6 mm, and with permit- 

tivity c = 38. In these figures the circular data points &present 

Fig. 6.12 Distributions of magnetic and electric surface current 
densities for TE016 mode of cylindrical dielectric resonator 
(reference [19], 01983 IEEE) 
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' 0 

Fig. 6.13 Distribution of electric surface current density for HEM126 
mode of cylindrical dielectric resonator (reference [19], 
01983 IEEE) 

the magnitudes of the elements of one of the current coefficient sub- 

vectors IJ >, IJ >, IM >, or IM >. Straight lines are used to connect 
t d t  4 

the data points to provide a better indication of the current distri- 

bution. The actual current magnitude distribution, of course, does not 

exhibit any slope discontinuities, except possibly at the corners of the 

cylindrical resonator and at points where the current magnitude is zero. 

The curves are plotted as a function of the arc length variable t along 

the surface for a constant value of the +coordinate. The variation in 

the 4 direction for each individual current component is either cos(mq5) 

For the resonator specified above, the amplitudes of the magnetic 

surface current density Mt (solid line) and the electric surface current 

density J (dashed line) computed for an azimuthally symmetric mode 
0 

(m = 0) with a complex resonant frequency located at s = 2r(-0.05272 + 
9 j4.829) x 10 are shown in Fig. 6.12. The currents were computed using 

an 18-point model of the resonator (66 unknowns). The remaining two 

current components Md and J are zero at this frequency. From Sec. 6.6 t 
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we find that the resonant frequency of this mode is 4.829 GHz and the Q 

factor is 45.8 (for the 18-point model). The current magnitudes are 

plotted beginning from t = 0 at the center of one end face of the reso- 

nator, progressing radially outward to the resonator corner, up the side 

(parallel to the z-axis) to the second corner, and then radially inward 

to the center of the remaining face. The positions of the corners of 

the resonator along the arc length variable are indicated in the figure 

by the dashed tick marks. The amplitudes indicated on the vertical 

scale in the figure are only significant in relative terms, since we are 

finding the natural response of the system. Since M = E x 6 at the 
surface, where a is the outward-directed surface normal, it is readily 
seen from Fig. 6.11 that M is proportional to the E t component of 

electric field everywhere on the resonator surface. Using J = 6 x H, on 
the other hand, reveals that J is proportional to the radial magnetic 4 
field H on the end faces of the resonator, but is proportional to H on 

P 
the cylindrical surface of length h. Similarly, J would be proportion- 

t 
a1 to H on all surfaces of the resonator, while M would be proportion- 4 4 
a1 to E and E on the end faces and the resonator side, respectively, 

P 
if they were non-zero. Because the resonant frequency s was located 

assuming no azimuthal variation (m = O), and because M - 0 implies 4 - 
E = 0 along the side of the resonator, one might surmise that the mode 

is a TE mode (transverse electric to z). It clearly cannot be a TM mode 

because J and, hence, HZ, is non-zero along the cylindrical side of 
4' 

the resonator. The relatively constant behavior of Mt (E ) and the 4 
single extremum of J (H ) in the z-direction along the side of the 4 z 
resonator suggest that the axial mode index p = 6 should be used to 

indicate less than one complete half-wavelength of variation in the z- 

direction. The single pronounced extremum of J (H ) on each end face 
4 P 

of the resonator suggests that the radial mode index n = 1 should be 

used to indicate variation close to one half-wavelength in the radial 

direction. In this region, Mt also exhibits only one extremum on each 

face. Thus, based on the surface current distributions, it is es- 

tablished that the azimuthally symmetric mode located at 4.829 GHz is 

the TEOl6 mode 

If one searches in the complex plane for resonant frequencies of 

modes having the Fourier index m = 1, i.e., those having an azimuthal 

variation of exp(j4) (or equivalently, cos 4), one of the resonances 
found, using a 27-point model (102 unknowns) for the same resonator as 
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before, corresponds to a frequency of 6.638 GHz and Q factor of 52.1. 

The magnitudes of the modal electric surface current components 

evaluated at this resonance are shown in Fig. 6.13. The plot of the 

modal magnetic current distribution has been omitted for brevity. The 

distributions shown in Fig. 6.13 are slightly more complicated than in 

the previous example, but are interpreted similarly. If we investigate 

the fields on the end faces of the resonator in the same manner as 

before, we find that the radial magnetic field (J ) varies more rapidly b 
than does the other component of magnetic field and it clearly exhibits 

two extrema in the radial direction. This indicates a probable radial 

mode index of n = 2. Both electric current components have variations 

along the cylindrical surface of the resonator characteristic of a half- 

wavelength (or slightly less) resonance, indicating a z-variation mode 

index of p = 6. One would, therefore, conclude that the mode with 

azimuthal variation specified by m = 1 and resonant frequency 6.638 GHz 

is the HEM126 mode. 

The behavior of the modal currents on the end faces of the resonator 

may be better understood when compared with actual field patterns. A 

convenient comparison can often be made with the field patterns in an 

infinitely long dielectric rod waveguide. The fields for several modes 

of a dielectric rod waveguide have been computed and displayed via 

computer graphics by Kajfez [39]. The waveguide fields of several modes 

have also been displayed in this manner and discussed in Ch. 3. 
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6.9 Com~utation of Modal Field Distributions 

As indicated previously, it is generally desirable to know the 

actual field structure in and around the resonator for mode identifi- 

cation and so that more efficient coupling or mode suppression tech- 

niques can be developed. While use of the surface currents (i.e., the 

fields tangential to the resonator surface) for mode identification is 

illustrated in the preceding section, the interpretation of these 

currents may be difficult and could lead to a mistake in identification 

of some modes, particularly in the case of the higher-order hybrid 

modes. The equivalent surface currents are computed primarily so that 

we may use them to calculate the field anywhere in space, either inside 

or outside the resonator. 

The electric and magnetic surface current densities are used to 

compute the fields in the region outside the resonator by allowing them 

to radiate via the homogeneous-region electric and magnetic vector and 

scalar potentials in which the medium parameters are those of the region 

exterior to the resonator, as indicated by equations (6.1) and (6.2) 

with i = 1 and by Fig. 6.2(a). To compute the fields inside the reso- 

nator, the same equations would be used, but with the sign of the com- 

puted currents changed and with all medium parameters in the equation 

set to those of the dielectric resonator (i = 2 in the equations), so 

that the currents (-J, -M) radiate in a homogeneous region as in Fig. 
6.2(b). For the body of revolution, however, the process can be made 

somewhat simpler because it is already known that each element of the 

Fourier component current set (J,(t), %(t)) with index m varies as 

exp(jmd) and produces fields (%(t), %(t)), which also vary as 

exp(jmd). Furthermore, for the present dielectric resonator analysis, 

we are interested in computing the fields due to only one of these modal 

current sets. It is, therefore, possible to reduce the equations so 

that the fields (%(t), %(t)) are computed along a single cut, for 

example, d = 0, and to include the exp(jm4) variation later. Thus, one 

would simply write a program that accepts the current coefficient vector 

IIm> as input data, substitutes these coefficients appropriately into 

current and charge expansions, such as equations (6.23) and (6.26), and 

accumulates the vector sum of the fields resulting from each of the 

terms in these expansions. Computation of the field due to each ex- 

pansion term involves, of course, a numerical surface integration over 

the source band for an expansion function. This integration must be 
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performed carefully when the observation point is near the source 

region. 

A somewhat more convenient procedure in which the preceding diffi- 

culties have already been resolved can be developed if one recalls that 

the simultaneous equation system Z 11 > actually represents equations of -m m 
the form (cf. equations (6.14) and (6.15)) 

where ($,$) and (E,E) are the fields evaluated just outside and just 
inside the resonator surface, respectively. In particular, a single 

element of the moment matrix for mode m is related to the difference 

between one component of a field, for example, Ed, evaluated at point 2 

due to a unit current source "band" (e.g., a basis function for M such 4 
asIIi(t1)ejm4'existingover arange t < tf <ti. -r<('<n, andthe 4 i-1 
same field component evaluated at 2 due to the negative of the same unit 

source, but with the sources radiating in a different homogeneous medi- 

um. Because of the additive nature of the fields in (6.36) and (6.37), 

it is relatively simple to create a modified moment matrix program in 

which a single matrix element is related directly to the field at a 

point r produced by a source basis function. This can be done by simply 

eliminating all terms associated with the second homogeneous medium. 

The original moment matrix program, of course, restricts the observation 

point to the surface S of the body, as indicated in (6.36) and (6.37). 

It is again a simple modification to allow the observation points to be 

selected from a new set of coordinates which could be anywhere in space. 

To compute the fields, therefore, we first specify the generating 

arc for a phantom surface of revolution on which we wish to know the 

tangential fields. The fields tangential to this surface due to unit 

sources on the resonator surface are then computed using the modified 

version of the moment matrix routine which includes only the potentials 

involving the Green's function of the medium in which the field is to be 

evaluated. The resulting matrix, which essentially represents a 

numerical Green's function, is multiplied by the previously computed 

modal current solution (11 > for in region 1 of Fig. 6.1, -11 > for r m m 
in region 2) to obtain the tangential fields on the generating arc of 
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the phantom surface. The fields so computed are actually weighted field 

values, since (6.36) and (6.37) were "tested" with the functions defined 

in (6.27) and (6.28) to obtain expressions for moment matrix elements. 

The appropriate values for the fields are easily obtained, however, by 

dividing by the length of the phantom surface subdomain at the obser- 

vation point. 

Fields anywhere on the phantom surface are obtained by including the 

exp(j4) behavior of the field. It is generally desirable to express 

the field behavior in terms of cos(m4) or sin(m4) rather than exp(jm4). 

To do this, it is necessary to determine the current coefficient vector 

11 > for the Fourier mode with index -m. It can be shown in a manner 
-m 

similar to that given in [34] that II-,> can be expressed in terms IIm>. 

The variation of the field components can then be readily determined. 

For the hybrid modes (m f O), however, each mode has a degeneracy in the 

sense that the field can acquire either cos(m)) or sin(m4) variation. 

If we choose, for example, the mode in which the field component Et 

(which could represent either E EZ, or a combination thereof) varies 
P '  

as cos(m)), we find that the H field also varies as cos(mqi), while the 
4 

remaining two components vary as sin(m4). If any asymmetry is intro- 

duced into the system, such as the use of two different types of probes, 

the modes indicated above are no longer degenerate. This fact has been 

used to advantage by Guillon and Garault [40] and Fiedziuszko [41] to 

effectively produce a dual-mode filter using a single resonator (see 

Sec. 9.8). 

The preceding process for computing the fields tangential to the 

phantom surface may be repeated as often as necessary for new phantom 

surfaces until the fields have been calculated over the desired region. 

The major disadvantage of computing the fields in this manner is that, 

because only the t and 4 components of the field are computed on the 
phantom surface, two phantom surfaces are required to compute both the p 

and z components of the field at a particular point in space. The 

procedure does, however, provide an expedient means for computing near- 

field distributions without developing complicated new computer subrou- 

tines which include integration over the surfaces of the elementary 

bands and the appropriate vector summation of all contributions from the 

four surface current components (J 49 Jt, M4, and Mt). 
For the TEOl6 mode, field distributions obtained via this procedure 

have been compared with the theoretical distribution for a resonant 
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section of a dielectric rod waveguide terminated by two parallel mag- 

netic walls, for which the solution is available in terms of Bessel 

functions [42]. This comparison is shown in Fig. 6.14 for resonators 

having radius a = 5.25 mm and r = 38.  The height of the isolated reso- 

nator is h = 4.6 mm. The resonant frequency used for the computations 

was 4.829 GHz. One observes in Fig. 6.14 that the agreement is quite 

good inside the resonator (peak values have been normalized). The field 

of the isolated resonator, however, decays more slowly outside the reso- 

nator than does the field for a resonant section of dielectric rod. 

Fig. 6.14 Comparison of TE016 mode electric field (solid line) for 
isolated dielectric resonator and TEoll mode electric field 
(dashed line) for dielectric rod waveguide terminated by 
parallel magnetic walls (reference [22], 01984 IEEE) 
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6.10 Inter~retation and Use of Modal Field Distributions 

In this section we present a catalog of electric and magnetic field 

patterns for several low-order resonant modes in isolated dielectric 

resonators which have been computed with the methods described in the 

preceding sections. In conjunction with the field plots we also attempt 

to provide an indication of how these patterns may be useful for 

designing tuning mechanisms, coupling devices, or mode suppression 

devices. The electric and magnetic fields for a particular mode in an 

isolated resonator, which we may represent generically as the vector 

field E, oscillate and decay exponentially as functions of time. Even 

if the decaying nature of the field is ignored, it is difficult to 

represent graphically the three-dimensional spatial distribution of the 

magnitude and the phase of the vector field E. Therefore, we display 

instead the instantaneous values of the vector: 

at several instants of time, such as 

X X 
w t = 0, 4 , 7 , etc. 
mnP 

In the above we use w to represent the imaginary part of the complex 
mnP 

natural frequency of the mode (m,n,p), i.e., we do not include the 

exponential time decay factor. 

A computer-generated graphical display is used to show the orien- 

tation of the component of the field tangential to an observation plane 

at equidistant points within the plane, as well as to provide some rela- 

tive amplitude information at these points. In this section the fields 

are displayed in a plane either parallel or perpendicular to the axis of 

rotation (the z-axis), as indicated in Fig. 6.15. A plane containing 

the z-axis is referred to as a meridian plane. The plane that passes 

through the center of the resonator and is perpendicular to the z-axis 

is referred to as the equatorial plane. In plots showing the field in a 

meridian plane cut, the resonator cross section appears as a rectangle 

(side view of the resonator). In equatorial plane cuts, the resonator 

cross section is a circle (top view of the resonator). In all of the 

field distribution plots, the double-line arrows are used to indicate a 

computed field value of less than 3 dB below the maximum computed value, 
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MERIDIAN PLANE 
(+= ld2) 

EQUATORIAL 

Fig. 6.15 Equatorial and meridian planes for dielectric resonator 

while the longer single lines indicate a level between 3 and 10 dB below 

the maximum, and the shorter lines indicate a level between 10 and 20 dB 

below the maximum. When the field component tangential to the obser- 

vation plane is more than 20 dB below the maximum value of the field, 

the points are left blank. All the plots presented in this section were 

obtained for a resonator having radius a = 5.25 mm and height h = 

4.6 mm, and which is made of material with permittivity er = 38. The 

resonant frequencies and the Q factors (due to radiation) for this reso- 

nator are listed in Table 6.1. 

Figures 6.16 and 6.17 display the electric and magnetic fields for 

the TEOl6 mode, respectively. The electric field is shown in the 

equatorial plane at the moment w 016t = 0. The magnetic field in the 

same plane is zero. The magnetic field in a meridian plane is shown in 

Fig. 6.17. Since this is an azimuthally symmetric mode, the plot of the 

magnetic field would be the same in any meridian plane. The magnetic 
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Fig. 6.16 Electric field distribution in equatorial plane for TE016 
mode (reference [ 2 2 ] ,  81984 IEEE) 

Fig. 6.17 Magnetic field distribution in meridian plane for TE016 mode 
(reference [ 2 2 ] ,  01984 IEEE) 
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field is perpendicular to the electric field of Fig. 6.16, and its maxi- 

mum value occurs one-quarter period later in time at wOl6t = r/2. In 

general, all the magnetic field patterns are in time quadrature with the 

electric field patterns, so we do not specify the time at which the 

field is evaluated in subsequent figures. 

One observes in Fig. 6.16 that the electric field is quite strong 

everywhere within the equatorial plane of the resonator, except near the 

resonator center. A consequence of this is that a cylindrical plug 

could be removed from the center of the resonator (leaving a rectangular 

doughnut shape) without disturbing the field, and, hence, the resonant 

frequency, too much. Such a resonator is called a tubular or ring reso- 

nator and is illustrated in Fig. 6.18. Also shown in the vicinity of 

TUBULAR RESONATOR 

FIELD 

Fig. 6.18 Dielectric resonator with cylindrical plug removed showing 
strongest electric and magnetic field lines 

the resonator are lines indicating the strongest electric and magnetic 

fields. One notes that the magnetic field is strong down the center of 

the resonator. The presence or absence of the dielectric plug, however, 
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has little direct effect on the magnetic field. Thus, one cannot ef- 

fectively tune the TEOl6 mode by inserting, removing, or changing the 

position of a dielectric plug. However, since the magnetic field is 

strongest down the center of the resonator, as indicated in Figs. 6.17 

and 6.18, one would expect that modification of the magnetic field with- 

in the plug region in some manner would change the resonant frequency. 

Thus, one might insert a plug that would have a significant effect on 

the magnetic field, such as a ferrite, into the hole through the center 

of the resonator to tune this mode. 

One might also propose a mode suppression device for the TE 016 
by observing the electric field in Figs. 6.16 and 6.14. The electric 

field appears to be strongest at a distance of about three-quarters of 

the radius away from the axis of the resonator. If this holds true at 

the end face of the resonator as well (it does; cf. Fig. 6.12), then a 

thin wire loop with approximate radius 3a/4 placed on the end face, as 

illustrated in Fig. 6.19, would tend to suppress the TEOl6 mode [43]. 

/ 
WIRE LOOP 

7 
CYLINDRICAL RESONATOR 

Fig. 6.19 Wire loop placement for suppression of TE016 mode 

The mode is suppressed because the wire conductor forces the electric 

field along the line of the loop to zero. If the desired mode of oper- 

ation is the TMOl6 mode, for example, the loop does not affect the field 

of the operating mode, whereas it suppresses the undesired TEOl6 mode. 
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Coupling to the TEOl6 mode is often accomplished through the magnetic 

field via a small horizontal wire loop placed in the equatorial plane or 

by placing the resonator end face on a substrate near a microstrip line 

as indicated in Fig. 6.20, so that the magnetic field lines link with 

those of the loop or the microstrip. Coupling to a waveguide operating 

in the TEOl mode can be accomplished by placing the resonator on its 

side (rather than on the flat end face) within the waveguide, as 

Fig. 6.20 Methods of coupling to TE016 dielectric resonator mode 
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is also implied in Fig. 6.20. This coupling method is useful in cutoff 

waveguide sections for filtering (see Ch. 8 and 9). Coupling to this 

mode via the electric field can also be obtained using a small hori- 

zontal dipole or a bent monopole as shown in the figure. 

The magnetic and electric fields of the TMOl6 mode in the equatorial 

and meridian planes are shown in Figs. 6.21 and 6.22, respectively. 

Observe that the magnetic field of this mode is well-contained within 

the resonator. The outside electric field is not as well-contained and 

is relatively strong near the top and bottom faces of the resonator. In 

three-dimensional perspective, the field lines for the TMOl6 mode are 

similar to those shown in Fig. 6.18 for the TEOl6 mode, if one simply 

Fig. 6.21 Magnetic field distribution in equatorial plane for TM016 
mode (reference [22], 01984 IEEE) 
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Fig. 6.22 Electric field distribution in meridian plane for TM016 mode 
(reference [ 2 2 ] ,  01984 IEEE) 

reverses the labels on the electric and magnetic field lines. One notes 

that, because the electric field is relatively strong along the axis of 

rotation, it is possible to tune this mode by removing the cylindrical 

center section (again leaving a rectangular doughnut shape) and re- 

placing it by a movable dielectric rod 1441. 

Simply removing a cylindrical rod from the center has the effect of 

increasing the resonant frequency of the TMOl6 mode. Since the TEOl6 

mode resonant frequency is not much affected by this action, the tubular 

shaped resonator was originally introduced to reduce interference from 

the TMOl6 mode when TEOl6 is the desired mode of operation. Another 

mode suppressor for the TMOl6 mode might consist of a thin metal rod 

inserted through the center of the resonator, since this would force the 

axial electric field to zero. 

Several methods of coupling to the TMOl6 mode are illustrated in 

Fig. 6.23. Because the electric field is not well-contained and is 

strong along the axis of the resonator, a short capacitive probe, 

directed along the axis of rotation, should be well-suited for coupling 

to this mode. The advantage of a capacitive probe for coupling in this 

case is that it produces no coupling to modes other than the TM 
O ~ P  
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Fig. 6.23 Methods of coupling to TMol6 dielectric resonator mode 

modes, as long as the probe is well-aligned with the axis of the 

resonator. Coupling to a microstrip line may be accomplished by placing 

the resonator on its side with its axis of rotation parallel to the 

microstrip so that the magnetic field lines loop around the microstrip 

line (see Sec. 8.10). The resonator may be coupled to the TEOl wave- 

guide mode by placing the resonator on its end in the waveguide as im- 

plied by the orientation of the waveguide in Fig. 6.23. 



INTEGRAL EQUATION TECHNIQUES 

The remaining three resonant modes displayed here are hybrid 

electromagnetic modes (HEM) with respect to the axis of rotation. As 

previously indicated, each of these modes has a degeneracy in the sense 

that, as a function of the angle 4, it can acquire either a cos(m4) or a 

sin(@) dependence. For this reason, the angular reference 4 = 0 is 

indicated in the figures to specify the orientation of various field 

patterns with respect to each other. 

The hybrid mode with the lowest resonant frequency is the HEMll6 

mode, which is depicted in Figs. 6.24 through 6 . 2 7 .  As we have previ- 

ously noted in Sec. 6.6, it was not possible to observe this mode ex- 

perimentally with our measurement apparatus which simulated the free- 

space environment. Table 6.1 shows that the Q factor of this mode is 

Fig. 6.24 Magnetic field distribution in equatorial plane for HEM116 
mode (reference 1221, 01984 IEEE) 
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Fig. 6.25 Electric field distribution in plane near resonator end face 
for HEM116 mode (reference [22], 01984 IEEE) 

Fig. 6.26 Electric field distribution in meridian plane 4 = 0 for 
HEM116 mode (reference [22], 01984 IEEE) 
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Fig. 6.27 Magnetic field distribution in meridian plane 4 = r/2 for 
HEM116 mode (reference [ 2 2 ] ,  01984 IEEE) 

the lowest of all five modes investigated. The low Q factor makes it 

very difficult to achieve sufficient coupling to the coaxial cable 

leading to the measurement apparatus. 

The magnetic field in the equatorial plane is given in Fig. 6.24. 

The corresponding equatorial plane components of the electric field are 

always zero, because the E-field pattern has an odd symmetry with 

respect to the equatorial plane. The electric field shown in Fig. 6.25 

has, therefore, been computed in a plane parallel with the equatorial 

plane, but displaced by a distance 2.15 mm toward the resonator end face 

(which is located at z = 2.30 mm). The meridian plane in which the 

maximum electric field intensity occurs is the qi = 0 plane (Fig. 6.26). 

This mode has cos(6) variation so that in the 4 = r / 2  meridian plane 

there is only a &component of electric field, whereas only the p- 

component of the electric field exists in the 4 = 0 plane, as can be 

seen in Fig. 6.25. The maximum magnetic field intensity occurs in the 

meridian plane 4 = x/2. Note that the magnetic field is very weak 

outside each resonator face, while the electric field is strongest 

there. 
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The HEMll6 mode has recently been utilized by Long et al. [45] in 

the so-called resonant cylindrical dielectric cavity antenna. They ex- 

cited the resonator on a ground plane by drilling a hole in the reso- 

nator near the edge and inserting a short monopole probe as indicated in 

Fig. 6.28. With image theory, the ground plane corresponds to the 

equatorial plane of the resonator in Fig. 6.26. In this figure, it can 

indeed be seen that a small vertical dipole, which is located on the 

equatorial plane and near the side of the resonator, strongly excites 

the electric field of the HEMll6 mode. As we have previously noted, 

another application of this mode is to create dual-mode filters [40,41] 

(see also Ch. 8 and 9). 

ELECTRIC 
FIELD \ 

1 COAXIAL 
RESONATOR ELECTRIC 

/ CABLE 

( ( ~ A C F  I FIELD 
".-"b, 

(IMAGE) 

Fig. 6.28 Dielectric resonator operating as radiating element in the 
HEM116 mode when excited by monopole 

One notes from Table 6.1 that the HEMll6 mode has a resonant 

frequency closer to that of the TEO16 mode than the other modes. Under 

circumstances other than the isolated case, the HEMll6 mode may be in 

even closer proximity and is likely to cause interference with the TE 
016 

mode operation. A well-known technique for suppressing the HEM 
116 

in filters is illustrated in Fig. 6.29. The mode is suppressed by 

wrapping two wires around the resonator at right angles in "package" 
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style [46]. It is clear from Figs. 6.25, 6.26, and 6.29 that this mode 

suppression technique works because one of the wires forces the strong 

electric field tangential to the top, bottom, and sides of the resonator 

to zero along the wire length. The second wire, which crosses the 

resonator at right angles to the first, suppresses the electric field of 

the degenerate mode. These wires, however, do not significantly affect 

the TEO16 mode because the electric field of that mode is always normal 

to the axes of the wires (see Fig. 6.16). Also indicated in Fig 6.29 is 

one possible method for external coupling to the HEMll6 mode. One 

observes in Fig. 6.26 that the electric field is strong just outside the 

DIPOLE FOR I ( M, COUPLING 

ELECTRIC 
FIELD 

DIELECTRIC 
RESONATOR 

Fig. 6.29 Mode suppression and coupling for HEM116 mode 
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resonator end face and near the center of the resonator. In this 

region, the field is oriented parallel to the surface of the resonator 

and primarily in a uniform direction. Thus, a short balanced dipole 

probe centered on the axis of rotation and oriented along a diameter of 

the resonator end face should excite this mode well. 

Figures 6.30 through 6.32 deplct the HEMl2& mode, which has a reso- 

nant frequency only 5 % higher than the HEMll6 mode (see Table 6.1). 

One may compare the field distributions shown there with those in Ch. 3 

for the HEMl2 wave guided by a dielectric rod waveguide. The electric 

field in the equatorial plane is shown in Fig. 6.30. In Fig. 6.31, 

which shows the electric field in the meridian plane, one notices the 

strong localized field at the four corners of the resonator. Thus, when 

Fig. 6.30 Electric field distribution in equatorial plane for HEM126 
mode (reference [22], 01984 IEEE) 
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Fig. 6.31 Electric field distribution in meridian plane d = 0 for 
HEM126 mode (reference [22], Q1984 IEEE) 

Fig. 6.32 Magnetic field distribution in meridian plane 4 = lr/2 for 
HEM126 mode (reference [22], 01984 IEEE) 
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the resonator is placed face down on a microstrip substrate, one might 

expect this mode to be strongly coupled to an adjacent microstrip line 

through the electric field action (capacitive coupling), as indicated in 

Fig. 6.33. Figure 6.32 shows the magnetic field for this mode in the 

meridian plane 4 = r/2. Additional coupling of this mode to the micro- 

strip line through the magnetic field should also occur in a manner 

similar to that of the TEOl6 mode (compare Figs. 6.17 and 6.32). 

ELECTRIC FIELD 

DIELECTRIC 
RESONATOR 

MICROSTRIP 
,/ LINE 

GROUND PLANE 

Fig. 6.33 Coupling between microstrip line and HEM126 mode of 
dielectric resonator 

The fields for the HEM216 mode are shown in Figs. 6.34 through 6.37. 

This mode has its resonant frequency very close to the resonance of the 

TMOl6 mode, and if TMOl6 is the desired mode of operation, the HEM2l6 

mode creates an undesirable nearby resonance. For the dielectric 

resonator used in this work, one sees from Table 6.1 that the resonant 

frequencies of these two modes differ by only 3 %. The field pattern of 

the HEM216 mode is, therefore, of interest mainly because one would like 

to determine an effective means for suppressing the mode. The magnetic 

field pattern in the equatorial plane exhibits an octupole character, 

consisting of two linear quadrupoles rotated by x/2 with respect to each 

other, as shown in Fig. 6.34. The octupole is an inefficient radiator 

and, consequently, the Q factor of this mode is much higher than th.-t of 

any other mode listed in Table 6.1. The electric field distribution 

again has an odd symmetry about the equatorial plane. Therefore, the 

electric field in Fig. 6.36 is shown in a plane close to the end face of 
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Fig. 6.34 Magnetic field distribution in equatorial plane for HEM216 
mode (reference [22], 01984 IEEE) 

Fig. 6.35 Magnetic field distribution in meridian plane 6 = a/4 for 
HEM216 mode (reference [22], 81984 IEEE) 
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Fig. 6.36 Electric field distribution in plane near resonator end face 
for HEM216 mode (reference [22], 01984 IEEE) 

Fig. 6.37 Electric field discribution in meridian plane 4 = 0 for 
HEM216 mode (reference [22], 81984 IEEE) 
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the resonator because the transverse electric field is always zero at 

the equatorial plane. The maximum magnetic field occurs in the meridian 

plane 9 = 45'. Figure 6.35 show$ that the magnetic field is strongest 

near the equator. The electric field in the meridian plane 4 = 0 is 

shown in Fig. 6.37. 

A distinguishing feature of the HEM216 mode, which might permit its 

suppression without significantly affecting the TMOl6 mode, is that it 

possesses strong components of the electric field in the &direction. 

One observes in Fig. 6.36 that the component of electric field tangent 

to the observation plane is still quite large near the end face of the 

resonator. Thus, one might expect that a simple thin wire loop placed 

on the end face of the resonator would suppress the HEM216 mode just as 

it does for the TEOl6 mode (cf. Fig. 6.19). The radius of such a loop 

probably should be adjusted to coincide with the maximum value of E 
d 

along the line 4 = r/4 or 4 = 3r/4 on the end face of the resonator 

(E = 0 for 4 = 0 and = x/2). It is not clear from Fig. 6.36 where 
d 

this value occurs. From the equivalent surface current distribution for 

this mode [36], however, one finds that the maximum value again occurs 

at about p = 3a/4. 
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6.11 Other Resonator Shaves and Environments 

In the preceding sections of this chapter we have described a 

surface integral equation approach (SIE) for the analysis of dielectric 

resonators and have applied the method for cases involving isolated, 

cylindrical dielectric resonators. The SIE approach has several ad- 

vantages which make its use attractive, particularly for resonators 

situated in an open space, as we have indicated previously. One of the 

primary advantages of this approach, however, is that it can be applied 

to the analysis of dielectric resonators that have shapes which are more 

complex than the simple cylindrical resonator. It should also be possi- 

ble to adapt the approach to the analysis of dielectric resonators in 

the presence of other objects, which may or may not be rotationally sym- 

metric. 

The SIE approach can be applied directly in the form presented here 

to the analysis of dielectric resonators of more complex shape. The 

only restriction is that the resonator be rotationally symmetric. Cross 

sections of several body of revolution shapes which may be appropriate 

for study as dielectric resonators are sketched in Fig. 6.38. The 

usefulness of the tubular geometry with or without a tuning rod has been 

indicated previously. For an increased tuning range, the rod and the 

resonator may be conically shaped, as indicated in Fig. 6.38(d). The 

multiple resonators shown in Figs. 6.38(e) and 6.38(f) can be used to 

model a resonator above a ground plane, or, for example, two resonators 

having different dielectric constants or different sizes. The configu- 

ration of Fig. 6.38(f) is also of interest for the study of tuning with 

dielectric discs, such as described in [47]. Other resonator shapes may 

be useful for increasing the Q factor, increasing the coupling factor 

for a specific configuration, eliminating proximity of interfering 

modes, etc. 

The SIE approach can also be used in the manner described in this 

chapter to treat configurations involving dielectric resonators with 

metal tuning rods or plates, or resonators in partial or complete metal 

shields, such as indicated in Fig. 6.39, as long as the metal objects 

have the same axis of revolution as the resonator. The inclusion of the 

metal object is possible because the equivalence principle used in Sec. 

6.2 can be applied to perfect electric conductors as well. The 

dielectric resonator within the closed metal cavity (Fig. 6.39(d)) could 

also be treated by using a modified surface integral equation approach, 
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Fig. 6.38 Cross sections of some possible dielectric resonator 
geometries: (a) cylindrical with corners removed, (b) 
cylindrical with hemispherical cap, (c) rounded disks of 
different radii, (d) conical tubular with conical tuning rod, 
(e),(f) multiple cylinders 

in which the resonator is modeled by the SIE, but the presence of the 

metal cavity is accounted for by use of the Green's function for the 

cavity in appropriate terms of the SIE, rather than the homogeneous- 

space Green's function used previously. The latter approach of 

including the cavity Green's function would reduce the number of 

unknowns required in the numerical model, but would increase the 

difficulty and time necessary for computing the required surface 

integrals. Furthermore, it would be suitable only for cavities for 
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Fig. 6.39 Cross sections of dielectric resonator geometries with metal: 
(a) tubular resonator with metal tuning screw, (b) resonator 
with metal tuning plate, (c) resonator with partial metal 
shield, (d) resonator in metal cavity 

which the Green's function can be determined, such as a purely 

cylindrical cavity. The SIE approach described in this chapter, on the 

other hand, could be applied for any azimuthally symmetric cavity shape. 

Application to more complex configurations involving objects which 

do not have the same axis of symmetry as the resonator is also possible 

with some adaptation of the method. For example, one can model the 

resonant cylindrical dielectric cavity antenna [45] from Fig. 6.28 to 

any degree of accuracy desired (in principle) by using procedures such 

as those described in [ 2 7 ] .  In the crudest model for this geometry, 

which may be entirely adequate for computing the radiated fields, one 

simply ignores the presence of the monopole. Resonant frequencies and 

field distributions are then the same as those for an isolated resonator 

of twice the thickness of the original resonator (from image theory) and 

may be computed as indicated in Sec. 6.10. If more accurate results are 

required, a point-source or elemental-dipole current distribution may be 
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included as the excitation of the resonator. Inclusion of a source in 

the model, however, places this situation back into the realm of 

electromagnetic scattering problems. A response (radiation) would exist 

for a source of any given frequency. Also, the lack of axial symmetry 

in the source theoretically would cause an infinite number of modes to 

be excited in the resonator. In principle, this problem can be solved 

numerically at any real frequency and for any mode, although some 

difficulty may be encountered in the inversion of the moment matrix near 

the complex resonant frequencies of the high-Q modes. Such a model 

might be quite useful in the determination of the optimal location of 

the monopole feed, or for determining the extent to which undesired 

modes are excited in the resonator by the source. If more accuracy is 

required (for instance, for computation of the input impedance), the 

coaxial aperture and the monopole (center conductor of the coaxial 

cable) can also be modeled numerically in a manner similar to that 

presented in [ 2 7 ] .  

Several configurations involving objects which do not have the same 

axis of symmetry, such as coupled dielectric resonators, as well as 

other factors increasing the complexity of analysis, such as the 

proximity of a microstrip transmission line and the presence of a 

dielectric substrate, are indicated in composite form in Fig. 6.40. 

Approximate methods for modeling such configurations exist. For some 

configurations these methods may be adequate, while for others they may 

fail or may not be sufficiently accurate for a particular project. 

Numerical solutions for geometries involving such complexities via the 

surface integral equation method appear to be feasible and should 

provide accurate, reliable results, but it may be impractical in many 

cases. The practicality of applying the surface integral equation 

approach in a given situation will depend on the particular geometry to 

be investigated and on whether simpler approximate methods provide 

sufficient accuracy. Further research also needs to be performed to 

investigate the possibility of difficulty in inverting the moment matrix 

or solving the system of simultaneous equations for frequencies very 

near complex plane resonances when sources are present in the problem. 
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Fig. 6.40 Composite geometry showing coupled dielectric resonators 
located near a microstrip transmission line 
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Chapter 7 
MATERIAL PROPERTIES 

Darko KajlIz 

7.1 Introduction 

In this chapter, we will take a closer look at the imperfections 

occurring in dielectric resonators. The two major imperfections are 

(i) the losses within the dielectric and (ii) the temperature dependence 

of the mechanical and electrical properties of the dielectric. Each of 

the two is of great significance because they impose limits on the two 

most important properties of dielectric resonators: the high Q factor 

and the high temperature stability. 

Inside an isotropic dielectric material which also has a non- 

vanishing conductivity u ,  the Maxwell equation for time-harmonic vari- 

ation is expressed as 

The finite conductivity u is an obvious reason for losses, namely, for 

converting electromagnetic energy into heat. 

Another mechanism which produces losses in the dielectric material 

at microwave frequencies is the damping caused by the alternating polar- 

ization of material exposed to the time-harmonic electric field. These 

losses may be expressed by defining a dielectric constant which is a 

complex number [1,2]: 

e  = e '  - j E "  

In such a notation, (7.1) becomes 

v x = j o [ c l  - j ( c W  + z ) ] ~  ( 7 . 3 )  

It can be seen that E '  takes the role of a traditional dielectric 
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constant, and the total losses are caused partially by c "  and partially 

by o. The loss tangent is defined as the ratio of the imaginary part to 

the real part in brackets above: 

At microwave frequencies, the first part of expression (7.4) is domi- 

nant. Typically, a '  is constant and 6 "  grows with frequency. 

It should be noted that the symbol 6 used in (7.4) has nothing in 

common with the skin depth 6 of an electric conductor: 

The confusion can be avoided if one uses the dielectric Q factor, Qd, to 

denote the dielectric losses. When a resonant cavity is uniformly 

filled with the lossy dielectric, the dielectric Q factor is an inverse 

of the loss tangent: 

The manufacturers of dielectric resonators usually specify the value 

of Q to be inversely proportional to frequency: d 

For example, the material D-8512 manufactured by Trans Tech has C = 

40000, when f is expressed in GHz [ 3 ] .  At 4 GHz, this material has Q = 
d 

10000, and at 8 GHz the same material has Qd = 5000. 

The linear growth of the loss tangent with frequency can be 

expressed in a more general form as follows: 

tan 6 = A + Bf (7.7b) 

For instance, material (Zr*Sn)Ti04, produced by Murata, is quoted [4] to 

have A = 0.205 and B = 0.170 ~o-~/GHz. At a frequency of 

8 GHz, we compute from (7.7b) and (7.6) that this material has Qd = 

6390. 
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Sections 7.2 and 7.3 of this chapter treat the theoretical and 

experimental procedures for evaluating the dielectric losses (as well as 

other losses) in resonant cavities that are partially filled with 

various dielectric materials. The rest of the chapter is devoted to the 

temperature effects pertinent to dielectric resonators. 
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7.2 Resonant Cavities Filled with Inhomoeenous Materials 

The Q factor of a resonant cavity is a ratio of the stored energy to 

the dissipated power, as can be recalled from Ch. 2: 

In the above, o is the resonant frequency, W is the total stored 

electric energy in the volume of the cavity, and P is the total 
tot 

dissipated power. 

In a practical microwave cavity, the power may be dissipated in 

several different ways. The general situation is shown in Fig. 7.1. 

The cavity is enclosed within a metal shield. Inside the shield we see 

three regions, each filled with a different dielectric material. For 

EXTERNAL 

CIRCUIT 

Fig. 7.1 Resonant cavity filled with inhomogeneous dielectric 

instance, region 1 may be the dielectric substrate of a microstrip 

circuit, region 2 may be the dielectric resonator, and region 3 may be 

air. The total stored electric energy is obtained by integrating over 

all three regions: 



MATERIAL PROPERTIES 

The total power dissipated in the dielectric is obtained by a 

similar integration: 

The total power dissipated in the conducting shield is obtained by 

integrating over the surface of the shield: 

where Js is the surface current density on the shielding conductor. If 

the shield is not completely closed, some power P may be lost to 

radiation. Finally, some power P may be coupled to an external 
ext 

microwave circuit, and dissipated there. The total dissipated power is 

then 

It is customary to define the partial Q factors according to the 

manner in which the cavity power is dissipated. The dielectric Q factor 

is, thus, 

and the Q factor due to conductor losses is 

Similarly, the radiation Q factor is 

and the external Q factor is 
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(7.16) 

The total Q factor is, then, from (7.8) and (7.12): 

The first three parts on the 

is usually called the unloaded Q 

+ L + L + L  (7 .17) 

Qc Qr Qext 

right-hand side of (7.17) comprise what 

factor of the resonant cavity: 

Most often, the shield is entirely closed so that there is no radiation. 

In this case, the third term in (7.18) can be ignored. 

Another useful quantity in dealing with inhomogeneously filled 

resonant cavities is the electric energy filling factor p . It is 

defined as the ratio of the stored electric energy in a given region to 

the total stored electric energy in the cavity. For the cavity in Fig. 

7.1, the three filling factors are 

W 
- A , where i = 1,2,3. 

pei - We 

The integrals appearing on the right-hand sides of (7.9) and (7.10) 

are identical to each other within each region Vi. Therefore, the 

dissipated power and the stored energy in each volume are related as 

Using the filling factor from (7.19), we obtain 

Pdi = 2W w tan 6i = pei 2oWetan si e i 

so that the partial Q factor due to dielectric losses in the region i 

(i = 1,2,3) can be expressed in terms of the filling factor and the loss 

tangent as follows: 
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If all three regions in Fig. 7.1 are filled with lossy dielectrics, the 

overall Q factor due to dielectric losses can be computed from the 

partial dielectric Q factors in the following manner: 

As an illustration of a resonant cavity filled with inhomogeneous 

dielectric, we will analyze the Courtney holder shown in Fig. 7.2. For 

Fig. 7.2 Courtney holder 

the resonant mode TE the length L is equal to p half-wavelengths. Olp ' 
From (3.76) : 

flL = px for p = 1,2,3, . . .  (7.24) 

The electric field of this mode, inside dielectric (region 1). is given 

by 

Outside the dielectric (region 2), the electric field is 
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where k and k are the radial wave numbers in regions 1 and 2. 
Pl P2 

Substituting (7.25) into (7.9), and using the integral (4.53), one finds 

the electric energy stored in the dielectric rod: 

The electric energy stored in region 2 is obtained from (7.26), (7.9), 

and (3.55) 

Arguments x and y stand for the following: 

x = k  a and y = k  a 
P 1 P 2 

The ratio of the two energies is 

where the factor W is defined as 

For high-s dielectrics, W is a number typically smaller than unity, 

as can be seen in Fig. 7.3. For the dimensions of the resonator in 

Table 3.1 (cr = 38, a = 4.25 mm, L = 4.25 mm) and for p = 1, we read the 

value k a = 0.71. Thus, from Fig. 7.3, we find that 0 
The filling factor for region 1 of the resonator 

W = 0.14. 

in Fig. 7.2 is 
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By using (7.30), pel becomes 

Substituting the values from the above example, we compute the filling 

factor for.region 1 of the TEOll mode to be pel = 0.996. In other 

words, 99.6% of the entire stored electric energy is contained within 

the dielectric rod. In this case, the filling factor is practically 

equal to unity. 

Fig. 7.3 Factor W, utilized to evaluate the ratio of 
energies for TEolp resonant mode 

Region 2 is filled with air. Usually, losses in air can be 

neglected. Therefore, the Q factor of the TE mode due to dielectric 
O ~ P  

losses is 

1 + W/sr 
Qd = Qdl = tan 6 
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Next, we will compute the Q factor due to conductor losses. This 

could be done by integrating the square of the surface current over the 

two parallel metal plates. However, we will utilize an alternative 

procedure, the so-called incremental frequency rule from ( 2 . 1 4 2 ) :  

In the above, fo is the resonant frequency of the cavity, and Afo is the 

change in resonant frequency computed for the case where all the metal 

walls are moved inward for one skin depth 6. 

A slight complication in evaluating the differential Afo in ( 7 . 3 5 )  

is caused by the fact that the resonant frequency fo of the Courtney 

holder cannot be expressed explicitly. The resonant frequency is ob- 

tained by solving the eigenvalue equation of the TEOl mode in the die- 

lectric rod waveguide. From ( 4 . 9 5 ) ,  this equation is expressed as 

The resonant frequency is computed from ( 7 . 3 6 )  and from the resonance 

condition ( 7 . 2 4 ) .  Substituting ( 7 . 2 4 )  in ( 4 . 9 6 )  and ( 4 . 9 7 ) ,  we find 

If the length L of the resonator is shortened for two skin depths, as 

the incremental frequency rule requires, the resonant frequency fo will 

change and, accordingly, koa will change. Variables x and y in ( 7 . 3 7 )  

and (7.38) can be considered as being dependent on L and k a: 0 

Furthermore, ( 7 . 3 6 )  can be written as a sum of two terms, where one is a 
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function of x only, and the other is a function of y only: 

F(x) + G(y) = 0 

The differential of this expression is 

Using the fact that 

and 

it is possible to evaluate all the needed derivatives and substitute 

them into (7.35) to obtain 

In the above, factor W is the same factor, from (7.31), as evaluated 

earlier in the process of finding the Q factor due to dielectric losses. 

In order to get an idea about the magnitude of the Q factor which 

can be achieved for the Courtney holder, let us evaluate Q for the same 

example of the TEOll resonator from Table 3.1. Assuming both plates to 

be made of copper, and assuming the conductivity is the same as at low 
7 frequencies (o = 5.8 10 Siemens/meter), we find from (7.5) the skin 

depth 6 = 0.740 pm. The Q factor due to conductor losses is then 

For the same resonator, assume the manufacturer's listed value for 

the dielectric Q factor is 10,000 at 4 GHz (see Resomics-U material, 

Appendix 7.A). By using (7.7a) and (7.34), we find 
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Therefore, for this Courtney holder, dielectric losses are roughly of 

the same magnitude as conductor losses. The unloaded Q factor is then 

f& = 1/(1/4909 + 1/5033) = 2485. 

Finally, we may check the possibility of radiation losses for the 

above resonator. When the distance L becomes larger than X /2, a radi- o 
ally outgoing wave may propagate between the parallel plates. For 

L = 4.25 mm, the cutoff frequency of such a propagating mode is 

35.3 GHz. Therefore, there is no danger of radiation losses occuring at 

7.98 GHz. However, the possibility of radiation should be kept in mind, 

because when the separation is larger than a half-wavelength in free 

space, the Q factor drops abruptly to a value that is an order of magni- 

tude smaller. Experimental results showing the occurrence of radiation 

in the Courtney holder can be seen in [4]. 
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7.3 Eeasurement of Loss Tan~enf 

The first step in an experimental verification of the loss tangent 

of the dielectric material is to measure the unloaded Q factor of the 

cavity containing this dielectric material. Traditionally, the measure- 

ment is performed for the TEOll mode in the Courtney holder. When the 

separation L is small enough that the mode is not radiating, one obtains 

from (7.18:) 

Using (7.34) and (7.45), the above equation may be solved for the loss 

tangent: 

For the TEO 

tan 6 = 
Qu 

11 mode, the integer p in the above equation is 

The equation is also valid for higher values of p, which w 

set to unity. 

,ill be needed 

later. The reader may recognize this as equation (3.83), which was 

originally derived by Hakki and Coleman (51, and also used by Courtney 

[61. 

In (7.47), QU and cr are measured values, as are the spacing L and 

the resonant frequency. When all of these quantities are substituted 

into (7.47), one may compute the loss tangent. Unfortunately, the re- 

sults of the loss tangent evaluated in this way are very inaccurate. 

Courtney [6] quotes an example where the estimated error of tan 6 is 

f 40 %. There are two main reasons for the inaccuracy of this method: 

(i) The conductivity u (needed to compute the skin depth 6) 

at microwave frequencies is not the same as the conduc- 

tivity at low frequencies. The difference may be as 

large as 20 % ,  depending on surface roughness, possible 

corrosion, and thermal annealing treatment of the metal 

plates. 

(ii) The measurement is based on equation (7.46) in which one 

positive real quantity is subtracted from another. When 

the two quantities are of comparable magnitude, their 

difference acquires a large relative error. 
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The indeterminacy of the value o can be removed by clever use of two 

different resonant modes, namely, TEOll and TEOlp, as described in a 

paper [7] by Kobayashi and Katoh. The principle of their procedure can 

be explained as follows. When a given dielectric resonator of radius a 

and length L is placed between two parallel plates as shown in Fig. 7.2, 

the resonance of the mode TEOll occurs at some frequency fo. Now, if a 

number of identical resonators is stacked on top of each other (total 

number of resonators is equal to an integer p ) ,  the resonant frequency 

of the TE mode between the parallel plates is the same fo as before. 
O ~ P  

In Fig. 7.4(a) one can see the distribution of the magnetic field for 

the resonant mode TE O1l. When the resonator length is made two times 

longer (p  = 2), the field of the TEOl2 mode is as shown in Fig. 7.4(b). 

The skin depth for the two different resonant structures is the same 

Fig. 7.4 Magnetic field patterns for: (a) mode TEoll 
and (b) mode TE012 
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(provided the same two metal plates have been used in both measure- 

ments). Then, by substituting the measured values twice in (7.47) (once 

for each measurement), it becomes possible to eliminate 6 so that the 

final formula for the loss tangent becomes [7]: 

tan 6 = 'p+-":'r [< - &] 
In the above, Qul is the unloaded Q factor of the TEOll mode, and Q is 

UP 
the measured unloaded Q factor of the TE mode (for the resonator with 

Ole 
p times larger length). 

The estimated tolerances on tan 6 quoted by Kobayashi and Katoh 

range between f 1.1 % (for a material with tan 6 = 18 and 

f 12 % (for a material with tan 6 = 1.59 Naturally, care must 

be exercised so that the separation between plates is small enough to 

prevent the radiation. 

Kobayashi and Katoh did not stack several resonators on top of each 

other, as was implied above, but rather they machined two specimens of 

the same radius, one of them being four times longer than the other. 

Also, their paper shows how to account for small inaccuracies in the 

physical dimensions and the fact that the two resonant frequencies 

slightly differ from each other. 

The second reason for inaccuracy in measuring the loss tangent is 

caused by the fact that the conductor losses constitute a large part of 

the total losses. Because dielectric materials are manufactured with 

larger and larger values of Qd, the conductor losses in the metal plates 

make it virtually impossible to measure the dielectric part of the 

losses by the Courtney method. To reduce the conductor losses, the 

metal shield should be removed from the immediate vicinity of the die- 

lectric resonator. The magnetic field intensity on the surface of the 

conductor becomes small, and the power lost in the conductor decays as 

the square of the field intensity, according to (7.11) (recall that the 

surface current is proportional to the tangential component of the mag- 

netic field intensity). The question is, how far should one move the 

metal shield for best results? 

DelaBalle, Guillon, and Garault have computed in [8] the influence 

of a cylindrical metal shield enclosing the resonator. Their results 

show that for a cylindrical shield of the same aspect ratio as the 
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resonator itself (see Fig. 7.5), namely, for h/b = L/a, becomes 

essentially equal to Qd when the ratio b/a is anywhere between 2 and 3. 

Fig. 7.5 Dielectric resonator in a cylindrical cavity 

Therefore, they recommend measuring tan 6 by placing the dielectric 

resonator in such a cylindrical cavity, and by assuming QU = Qd. In 

other words, when 2 < b/a < 3, they claim that the conductor losses have 
a negligible effect on the unloaded Q factor of the cavity. Leading 

manufacturers of dielectric resonators have adopted this method of 

measuring the loss tangent. Typically, their shielding cavities are 

about three times larger than the dielectric resonators which are being 

tested. 

An interesting physical interpretation of a very similar phenomenon 

was given by Imai and Yamamoto [ 9 ] .  They have studied a semispherical 

dielectric resonator in a semispherical conductive shield. The radius 

of the dielectric resonator is R1 = 1.2 mm, and its relative dielectric 

constant is e = 36 (see Fig. 7.6(a)). When the radius R2 of the con- r 
ductive shield was gradually increased while R1 was kept constant, the 

computed resonant frequency of the cavity behaved in the way indicated 

in Fig. 7.6(b). When R2 was only slightly larger than R1 (region (A) in 

Fig. 7.6(b)), the frequency changed rapidly as a function of R2. Then, 

in region (B), the frequency remained essentially independent of R 2' 
Finally, in region (C), frequency again changed rapidly as a function of 

R2. The rapid change of frequency in region (C) closely follows the 
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Ground 
conductor 

@ 
Fig. 7.6(a) Semispherical resonator (reference [9], 

01984 Scripta Publishing Co.) 

( A )  Transient 
mode 

( B )  D i e l e c t r i c  
resonator 
mode 

(C) Hollow 
c a v i t y  
mode 

Radius o f  the metal cap R2 (m) 

Fig. 7.6(b) Resonant frequency of the semipherical resonator in a 
semispherical metal cavity (reference [9], Q1984 Scripta 
Publishing Co. ) 
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resonance of an empty cavity, while the rapid change in region (A) 

corresponds to the frequency of a cavity fully filled with dielectric. 

In view of the incremental frequency rule, the Q factor due to con- 

ductor losses in the shield is large when the slope df/dR (frequency 2 
vs. the size of the cavity) is small. Therefore, in the range (B), Q 

is large and can be neglected, so that QU is mainly determined by the 
losses in the dielectric. Thus, in order to perform an accurate 

measurement of dielectric losses, the cavity walls should be placed at a 

certain distance away from the dielectric. At the time of this writing, 

an actual measurement procedure along these lines, which would properly 

quantify the small, but not entirely negligible, contribution from the 

conductor losses, has not yet been published. However, the analysis and 

measurements made by Kobayashi and Katoh [7] indicate that, even for a 

Courtney holder, if the conductor plates are sufficiently removed from 

the dielectric resonator itself, the unloaded Q factor is approximately 

equal to the dielectric Q factor. 
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7.4 Linear Coefficients 

The application of dielectric resonators in microwave filters has 

been attempted in the mid-1960s, but it was soon realized that a 

widespread use would be impractical unless the materials could be found 

with better temperature stability [lo]. Such materials were developed 

about ten years later [ll], and a temperature stability was achieved 

which is comparable to that of microwave hollow resonators made out of 

invar. Widespread use followed immediately [12]. 

The first temperature effect which comes to mind when talking about 

a microwave resonator is the expansion of material. It is an experi- 

mental fact that most solids expand linearly with an increase in temper- 

ature. A rod of length L will expand by AL when the temperature 

increases by AT. The constant of proportionality is a, the linear 

coefficient of expansion: 

The relative expansion per degree centigrade is very small, on the 

order of or as can be seen in Table 7.1, which was compiled 

from 113, Ch. 211 and [14]. Strictly speaking, the coefficients vary 

slightly as functions of temperature, and the values given in the table 

are the averaged results observed in the range between O'C and 100°C. 

The abbreviation often used to denote is ppm (parts per million). 

Table 7.1 LINEAR EXPANSION COEFFICIENTS 

Material 

Aluminum 
Brass 
Copper 
Steel 
Invar 

a (per 'C) 

23 x 
19 x 
17 x 101: 
11 x 10 

0.7 x lo-.6 

Material 

Consider the simple example of a microwave coaxial half-wavelength 

TEN resonator shown in Fig. 7.7. The electric field intensity is 

largest at the midpoint between the two shorted ends. The resonance 

occurs when the length L is one-half wavelength, A ,  of the TEN wave 

which is, furthermore, equal to the free-space wavelength Xo. We are 

a (per 'C) 

Glass (ordinary) 
Glass (pyrex) 
Teflon 
Polyethilene 
Fused quartz 

3.2 x 10- 
90 x 
190 x 

0.57 x 
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Fig. 7 . 7  Half-wavelength 

specifically assuming that the resonator 

nant frequency is, therefore, determined 

and since 

we have 

coaxial resonator 

filled with air. The reso- 

the condition: 

8 where c = 3  x 10 m/s. 

When temperature T changes by an increment AT, the relative change 

in frequency can be computed by taking the differential of ( 7 . 5 2 )  as 

follows : 

By taking the derivative of ( 7 . 5 2 )  and then using ( 7 . 4 9 ) ,  one obtains 

As an example of the use of ( 7 . 5 3 ) ,  we find that an air-filled co- 

axial resonator which is made of brass should demonstrate a relative 

change in resonant frequency with temperature of -19 ppm/"C. If the 

same resonator was made of invar, the temperature sensitivity would be 

reduced to -0 .7  ppm/'C. The sign of the result is negative because an 

increase in temperature makes the resonator longer, thus, its resonant 

frequency is decreased. 
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The linear expansion of solid macerials is the same in each 

direction in space, unless the material has anisotropic expansion 

properties. For the coaxial resonator in Fig. 7.7, the radii a and b 

expand with temperature by the same expansion coefficient as the length 

L does. However, the resonant frequency of the TEM resonator is not 

influenced by either a or b. 

The second effect of temperature on the resonant frequency of 

microwave resonators comes from the fact that the relative dielectric 

constant e also varies as a function of temperature. As a first 

approximation, the change is linearly proportional with temperature. 

The constant of proportionality is denoted by 7 the temperature coef- 
e' 

ficient of the dielectric constant: 

Suppose the coaxial resonator from Fig. 7.7 has been entirely filled 

with an insulator of relative dielectric constant cr. The wavelength X 

of the TEM field in the resonator is, thus, 

and the resonant frequency of the half-wavelength resonator is, hence, 

specified by 

As a function of temperature, the resonant frequency will shift for 

two reasons: because of the linear expansion, and because of the change 

in dielectric constant. This situation is expressed as follows: 

The sensitivity of the resonant frequency with temperature is denoted 

rf, the temperature coefficient of the resonant frequency: 
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(7.58) 

By taking the appropriate derivatives of (7.56), we find 

The above equation suggests an obvious method of achieving a 

temperature compensated resonator: r  must have an opposite sign from 

a, and have approximately double magnitude. All solid materials expand 

with rising temperature. Therefore, the dielectric material must 

exhibit a negative r e  in order to be suitable for temperature compen- 

sation. 

Equation (7.59) is not only valid for TEM resonators, but also for 

any other hollow waveguide resonator which is completely filled with an 

insulator of relative dielectric constant c 
r' 

As another example, consider a circular cylindrical hollow resonator 

of radius a and length L, as shown in Fig. 7.8. For simplicity of 

Fig. 7.8 Cylindrical cavity resonator 

discussion, assume that the resonator is made of a solid isotropic die- 

lectric material which is plated with a thin layer of good conductor, 

such as silver or copper. Then, only a and r  of the dielectric materi- 

al will influence the resonant frequency, since the thin metal layer 

will be forced to expand at the same rate as the bulk dielectric. 

The resonant frequency is obtained from (2.89) or (2.96) as follows: 

where x is a zero of a Bessel function or its derivative, depending on 
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the type of mode chosen. For example, for the TEoll mode, x = 3.832, 

p = 1, etc. When the expansion properties of the dielectric material 

are isotropic, we have 

In this case, the differential of (7.60) gives the same result (7.59) as 

in the TEM case. This means that (7.59) is valid for any TE or TM 
mnP mnP 

resonant mode of the cylindrical resonator in Fig. 7.8. 

For the resonant system which consists of several regions filled 

with various dielectric materials, (7.59) does not hold exactly true, 

but it remains, nevertheless, a fairly good approximation. An important 

example of such a resonator filled with inhomogeneous dielectric is the 

parallel-plate dielectric resonator used in the Courtney measurement. 

The resonant frequency of this resonant cavity is given by the set of 

equations (7.36), (7.37), and (7.38). If the temperature T is an inde- 

pendent variable, the quantities which become dependent variables are: 

the resonant frequency, the radius and the length of the dielectric rod, 

and the relative dielectric constant. The analysis starts with (7.42), 

using 

and 

Evaluating all the necessary differentials and utilizing definitions 

(7.49), (7.54), and (7.58), we obtain an interesting relationship: 

The difference between (7.64a) and (7.59) is in the appearance of the 

filling factor pe, defined earlier by (7.33) : 
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It may be recalled from the example treated earlier that p is very 

close to unity. Therefore, at least for the Courtney holder, the exact 

relationship between rf and r is almost the same as for a uniformly 

filled cavity. For other cavities filled with inhomogeneous matierals, 

the filling factor may differ considerably more from unity, so that the 

use of the approximate equation (7.59) may become the cause of signifi- 

cant errors in determining the value of r . This topic will be pursued 

further in the next section. 
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7.5 Covered DR on Microstrip Substrate 

In a typical microwave integrated circuit application the dielectric 

resonator is mounted on a dielectric substrate, and the whole unit is 

closed in a metal housing. Neglecting the presence of the microstrip 

conductor, the resonant system can be modeled as shown in Fig. 7.9. The 

dielectric resonator radius is a, and its length is L. The relative 

dielectric constant of the resonator is cr, and the relative dielectric 

constant of the microstrip substrate is E The surrounding material r2' 
is either air ( E  - 1) or some polyfoam filling. Due to temperature rl - 

Fig. 7.9 DR mounted on a substrate in a metal housing 

variations, each material expands or contracts with its own linear 

coefficient. In addition, the relative dielectric constants are also 

linearly dependent on temperature. The resonant frequency of the entire 

system will be either an increasing or a decreasing function of 

temperature. In an ideal situation, the proper selection of materials 

and the suitable combination of dimensions may result in a temperature- 

compensated system. 

The above problem has been studied by Higashi and Makino [15], for 

the resonator operating in TEOl6 mode. They compute the resonant 

frequency of the system by an interesting simplification of the Itoh and 

Rudokas procedure. The computation is essentially the same as the one 

described in Ch. 4, except that the following approximation is used for 

computation of the eigenvalue x in place of (4.103): 
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where xO1 = 2.405.  Use of ( 7 . 6 5 )  enables one to compute the resonant 

frequency without utilizing Bessel functions, which would otherwise 

complicate the evaluation of differentials needed in the computation of 

temperature dependence. 

When all the differentials are evaluated, the relative change of 

frequency due to temperature looks as follows: 

Each of the coefficients C is a straightforward but somewhat lengthy 

expression, given explicitly in (151, and it will not be reproduced 

here. 

The practical implementation of ( 7 . 6 6 )  is obvious. From the 

dimensions of the resonant system and the known properties of materials, 

one can evaluate the numerical value of each coefficient C. This value 

indicates the relative importance of each part used in the system. 

Then, it is possible to select the parts in such a manner that the over- 

all frequency variation is minimized. 

So that the notation used in ( 7 . 6 6 )  corresponds with the linear 

coefficients introduced earlier, we note that the differential increment 

of any length L as a function of temperature is 

Using the linear temperature coefficients defined by ( 7 . 4 9 ) ,  ( 7 . 5 4 ) ,  and 

( 7 . 5 8 ) ,  we can rewrite ( 7 . 6 6 )  as follows: 

In the above, a denotes the temperature expansion coefficient, and r 

denotes the temperature coefficient of the relative dielectric constant. 

The subscripts indicate that part of the entire system to which the 



MATERIAL PROPERTIES 353 

individual coefficient refers. rf is the resulting temperature sensi- 

tivity of the entire resonant system, given in ppm/'C. 

An example of the values which one may encounter in practice is 

given in Table 7 . 2 .  The example is taken from [15] for a system with 

resonant frequency f = 10.80 GHz. First of all, one can see that the 

three dominant coefficients are Ca, CL, and C Since the linear cr' 

Table 7 . 2  TEMPERATURE COEFFICIENTS OF A 
COVERED DR ON MICROSTRIP SUBSTRATE 

Dimensions r 

L  = 2 . 2 6  mm, L  - 2  mm, L  = 0 . 6 2  mm, a = 2.88 mm 1 - 2  

expansion of the dielectric resonator is isotropic, a = a L ,  and we have 

approximately (by ignoring all the other coefficients): 

For the values given in the Table, C + C = - 0 . 9 3  and Ccr = - 0 . 4 9 3 .  It a L  
can be observed that in the first approximation the relationship speci- 

fied by ( 7 . 5 9 )  is still valid. The next closest factor of importance is 

the expansion of the dielectric substrate material, denoted CL2, and SO 

on. 

The dielectric resonator system in Fig. 7 . 9  fits the simple model 

discussed in Ch. 4  for which the PC computer programs DRESP and DRESV2 

have been developed. Program DRESV2 is based on an improved Itoh and 

Rudokas procedure. The same procedure in simplifed form has been used 

by Higashi and Makino in their study of temperature stability. Thus, we 

should be able to use the computer program DRESV2 to obtain the same 

results numerically as those derived analytically by Higashi and Makino. 

Numerical evaluation of the coefficient C is done as follows. The 

dimensions and the values of dielectric constants as given in Table 7.2 
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are entered into the program. The resonant frequency computed by DRESV2 

is freq(I&R) = 10.91248. Next, the radius a of the resonator is 

increased by 0.1% (the new value of a is 2.88288 mm), and the progam is 

executed again. The new resonant frequency for the Itoh and Rudokas 

model comes out to be 10.90622 GHz. The coefficient C is then computed 

as follows: 

This value agrees fairly well with -0.567, the result obtained by 

Higashi and Makino [15]. The more accurate variational result from 

DRESV2 gives Ca = -0.560. 

In general, if the dimension Li is increased to L. + AL. and the new 
frequency of the resonator is computed to be fi, any of the coefficients 

CLi in (7.68) can be obtained numerically as follows: 

Using an analogous procedure for other dimensions and relative 

dielectric constants, it is possible to find all the coefficients C in 

(7.68) by a strictly numerical procedure. A warning is appropriate 

regarding such a use of the program DRESV2. Because the program is 

written in BASIC language, it operates in single-precision arithmetic. 

On the other hand, when very small differences are evaluated, the single 

precision arithmetic does not always ensure sufficient accuracy of 

results. 

Higashi and Makino do not give any example of designing an actual 

circuit for temperature stable operation. Other authors, like Ishihara 

et al. [16] have found, experimentally, that it is indeed possible to 

achieve a highly temperature stabilized operation of an oscillator which 

utilizes a DR on a dielectric substrate as a frequency determining 

element. They found that the combination of the expansion coefficients 

of the DR and other parts is such that the perfect thermal compensation 

is possible only at a single position L1 of the tuning plate (see Fig. 

7.9). While the entire tuning range of the oscillator is up to 1.5 GHz 

in the best case, the high stability is achieved in a tuning range of 

only 50 MHz. 
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The stability is indeed impressive: only f 150 kHz, centered at 

11.85 GHz, over the temperature range between -20°C and +60°C. If this 

change was linear, it would amount to f 0.16 ppm/OC as quoted by 

Ishihara et al., but such an interpretation is erroneous. The frequency 

exhibits a bell-shaped curve as a function of temperature, as can be 

seen in Fig. 7.10, which is taken from [16]. Therefore, the frequency 

sensitivity is zero at the center of the stablized range of tempera- 

tures, but it is consequently higher at the edges of the temperature 

range. A graphical estimation of the slopes of Fig. 7.10 yields 

frequency sensitivites up to 0.55 ppm/"C, but this is still a very good 

stability. 

temperature ( ' c )  

Fig. 7.10 DRO frequency vs. temperature diagram 
(reference [16], 01980 IEEE) 

It is true that the temperature compensation is not possible in the 

entire tuning range, but, as Ishihara et al. point out, using a DR with 

a different T makes it possible to achieve the compensation at another 
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frequency. In this manner, they were able to manufacture the oscil- 

lators with the same high stability at any operating frequency from 9 to 

14 GHz. 
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7.6 Measurement of Tem~erature Coefficients 

One of the best understood and analyzed methods for measuring the 

dielectric constant and its temperature dependence is the one known as 

the Courtney method [6]. Courtney, actually, only perfected and scruti- 

nized a parallel-plate arrangement introduced earlier by Hakki and 

Coleman [5]. 

The side view of the parallel-plate resonator utilized in this 

measurement is shown in Fig. 7.2. The circular cylinder of relative 

dielectric constant a the value which is to be measured, is placed r' 
between two metal plates. Depending on frequency and the nature of the 

field excitation, many resonant modes are possible in this truncated 

dielectric rod waveguide, as described in Ch. 3. The lowest resonant 

mode is HEMll1, and the next higher mode, TEOll, is the one which is 

used in the measurement. The magnetic field, H, for the latter mode is 
plotted in Fig. 7.4(a). Suitable coupling to the TEOll mode is achieved 

by the use of coaxial cables terminated in small, horizontally oriented 

loops. The actual choice of the coupling mechanism is not critical: 

Courtney used small, horizontally bent monopoles and coaxial cables, 

whereas Hakki and Coleman utilized an iris in the rectangular waveguide 

which was placed outside of the lower metal plate. The resonant 

frequency of the TEOll mode is then measured in the transmission method. 

Because the resonant frequency of this configuration is known exactly, 

it is possible to compute the value of c which corresponds to the r 
measured frequency and to the measured dimensions a and L. 

Courtney has measured values of c for various materials and found 

the results to be very consistent. His estimate is that by measuring 

the dimensions with an accuracy of k 0.5 mils (+ 127 pm), and by 

measuring frequency with an accuracy of f 1 MHz, the error in a is less 

than 0.3 %. He has also placed the resonator in an oven and measured 

r as a function of temperature in a range between 20°C and 120°C. The 

measured results are shown in Fig. 7.11, which is taken from [6]. 

Notice a highly linear dependence of a with temperature. After cor- 

recting the results for the fact that the resonator dimensions have also 

expanded due to temperature increase, Courtney was able to obtain very 

accurate values of the temperature coefficients s . 
Unfortunately, the present-day materials commonly used in dielectric 

resonators were not available at the time when Courtney performed his 

measurements. Consequently, the highly reliable data in the Courtney 
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Material B 
D = 0.530 inch; L = 0.265 inch 
Temperature Coefficient = -170 PPM At 20°C 

I I I I I I I I I I I 
30 SO 70 90 110 13( 

TEMPERATURE (OC) 

Fig. 7.11 Measured er vs. temperature (reference (61, 01970 IEEE) 

paper [6] do not include those materials which are commercially availa- 

ble today. Later researchers selected other, indirect, methods for 

measuring the temperature variation of dielectric constant, as will be 

described in what follows. For this reason, the values T of the 

present-day materials used in dielectric resonators are largely unkown. 

It can be recalled from Sec. 7.3 that the Courtney method is not 

well suited for the measurement of the loss tangent of the dielectric 

material. When the materials are studied from the point of view of 

their possible use in dielectric resonators, the loss tangent of the 

material is very important and should be closely monitored. For this 

reason, it is convenient to remove the dielectric resonator from the 

immediate vicinity of the metal walls, and thus reduce the surface 

currents in the walls. In that case, the conductor losses become a 

minor part of the loss mechanism, and the measured unloaded Q factor is 

a good indicator of the quality of the dielectric material itself. 

Plourde et al. [ll] have placed the resonator in the center of a 

rectangular waveguide, the size of which is selected so that it is in 

the propagating region for the dominant TEIO mode. The measurement of 
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the unloaded Q factor was then performed by the reflection-type method 

(see Ch. 2). Such a measurement is faster and more indicative of the 

loss tangent of the resonator itself. 

Besides the unloaded Q factor, the temperature stability of the die- 

lectric resonator is a very important property to monitor. Plourde et 

al. simply monitored the resonant frequency of the resonator mounted in 

a waveguide and observed the change of frequency as a function of 

temperature. This measurement provided rf, the temperature coefficient 

of the resonant frequency, as defined in (7.58). The temperature coef- 

ficient of expansion, a, has been measured independently. Finally, the 

temperature coefficient of the dielectric constant was computed from 

(7.59) as follows: 

It has been shown in the previous section that the above formula is 

not accurate for resonators filled with inhomogeneous materials. The 

use of this formula in determining the approximate value of re is justi- 

fied in such a systematic testing of a large number of samples, as per- 

formed by Plourde et al., in order to select the best material. They 

have found that by varying the percentage of Ti02 and BaO, the two basic 

components in their experiment, it was possible to observe a distinct 

minimum in rf at 81.8 mol % of Ti02. The resulting compound, Ba Ti 0 2 9 20' 
had cr = 39.8, Q = 8000, and rf = 2 _+ 1 ppm/'C. The thermal stability 

of this material was two orders of magnitude better than the previously 

used rutile, Ti02, which had rf = 400 ppm/"C [lo]. 

The discovery of Plourde et al. started the proliferation of com- 

mercially available temperature-stable dielectric resonators made of 

this and other similar ceramic materials. Unfortunately, even today, 

the manufacturers of dielectric resonators determine the temperature 

properties of their materials in the same approximate way as Plourde et 

al. did by measuring only rf, and not r . 
As we have seen in the previous section, sf is the temperature coef- 

ficient of the inhomogeneous resonant system, such as the one in Fig. 

7.5. Granted, if the user utilizes the test cavity of the same size and 

shape as the manufacturer's test cavity, he will get the same rf as the 

manufacturer. However, the typical user wishes to miniaturize his reso- 

nant system. When the dimensions of the shield in Fig. 7.5 are 
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modified, the resulting rf may come out to be very different from the 

one specified by the manufacturer. In order to make an intelligent 

design, one has to perform an analysis which yields an equation like 

(7.68), and select the value of r which will minimize rf. 

Unfortunately, the manufacturers do not know accurately the r of 

their materials because they do not measure it. If pressed, the manu- 

facturers provide the values of a and suggest that the user, himself, 

compute r from (7.71). As we know, this is an unreliable procedure. 

A numerical example, which illustrates the magnitude of error 

involved in this procedure, will be taken from [3], The test cavity 

specified by the manufacturer is such as shown in Fig. 7.5. The reso- 

nator has E = 38.6, a = 6.35 mm, L = 5.08 mm. The shielding cavity is 

made of gold-plated aluminum with radius b = 19.05 mm and height h = 

26.67 mm. The thermal expansion coefficient for the dielectric reso- 

nator is a = 9.4 ~o-~/'c, and for aluminum 4 = 23 . ~o-~/oc. The 
temperature coefficient of the resonant frequency for this cavity is 

measured to be rf = 4 ~o-~/'c. We want to find the value of the 

temperature coefficient of the dielectric constant r . 
Using (7.71), we compute 

An accurate expression should take into account the expansion 

coefficients of different materials. In principle, resonant frequency 

is a function of the mechanical dimensions and of the relative 

dielectric constant: 

The temperature coefficient of resonant frequency is then 

This can be written as 

The linear coefficients C are defined in the same way as in (7.68). 
a 
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The resonant frequency of the shielded resonator cannot be expressed 

analytically in a form which would permit the evaluation of derivatives 

in (7.73). In order to evaluate C one must evaluate the numerical a 
derivatives according to (7.70) by using a computer program of the type 

described in Ch. 5. For the above example, such a numerical evaluation 

gives : 

From (7.74), we express 7 as 
6 r 

1 
7 = -  
sr 'a 

follows : 

['f - 'arar - cacac] (7.75) 

For the above example. (7.75) gives re = - 29.0 ~o-~/Qc. The differ- 

ence between this value and the previously computed approximate value is 

8.4 % .  

In the example shown, the manufacturer has used a test cavity which 

was three times as wide, and more than five times as high as the die- 

lectric resonator. Because of this, the thermal expansion of the metal 

cavity did not play a great role in the overall temperature coefficient 

of the resonant frequency. For a smaller cavity, the influence would 

become more significant. For example, if the same resonator was in- 

serted in a cavity which was only two times as wide and two times as 

high as the DR itself, the discrepancy between (7.75) and (7.71) would 

increase to 24.7 % .  

What really should be done is to measure r directly by the Courtney 

method and determine the slope of the straight line, such as that shown 

in Fig. 7.11. Then, the user would know a number which specifies the 

material itself, and this number would be valid regardless of whether 

the resonator is used in the TEOl6, HEMll6, TMOl6, or any other mode, 

and regardless of the size of the air gap between the resonator and the 

nearest metal wall. 
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7.7 Tem~erature Stabilization of DR Oscillators 

When a dielectric resonator is used as .a frequency-determining 

element of a free-running microwave oscillator, a highly stable source 

can be obtained. In order to achieve a good temperature compensation of 

the oscillator, it is not enough simply to select the dielectric reso- 

nator which has a temperature coefficient of resonant frequency equal to 

zero. An oscillator is specifically a system which consists of a 

passive circuit (typically DR mounted near a microstrip transmission 

line), and of an active device, which produces the oscillation. The 

oscillations occur at the frequency where the susceptance of the active 

device is equal and opposite to the susceptance of the passive circuit. 

In order to ensure that the oscillation frequency does not depend on 

temperature, the temperature coefficient of the passive circuit sus- 

ceptance must be equal and opposite to the temperature coefficient of 

the active device susceptance. 

Consequently, the general approach of designing a temperature-stable 

oscillator consists of measuring the temperature coefficient of the 

active device, and then selecting an appropriate resonator and its 

associated circuitry to compensate for the temperature dependence of the 

active device. 

A dielectric resonator oscillator (DRO) with very high temperature 

stability of 1 ppm/'C, operating at 11 GHz, was designed by Komatsu et 

al. [17]. The entire circuit is built on a microstrip substrate, the 

essential part of which is shown in Fig. 7.12 (bias lines are not 

shown). The active device is a GaAs FET transistor. A special stack- 

shaped dielectric resonator has been developed for this purpose, 

consisting of two different materials A and B as indicated in Fig. 7.13. 

The purpose of fabricating the "stack" DR is to achieve a highly 

linear temperature coefficient of resonant frequency in a wide range of 

temperature. Ordinary dielectric resonators made of homogeneous materi- 

als exhibit a slight nonlinearity of resonant frequency as a function of 

temperature. Figure 7.14 shows the values of frequency deviation with 

temperature, which Komatsu et al. have measured for two DR's made of 

different zirconate ceramics. The curve denoted by A is measured for an 

orthorombic structure, and curve B for a cubic structure. The nonline- 

arity of each curve is quite obvious, but note that one curve is convex, 

and the other concave. When the two materials are glued together in the 

stacked DR, the measured relative frequency variation becomes an almost 
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perfectly linear function of temperature (curve C). 

O R  9., J SOURCE OUTPUT ---D 

Fig. 7.12 GaAs FET DRO (reference [17], 01981 IEEE) 

Fig. 7.13 Stacked DR 
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TEMPERATURE ('C ) 

Fig. 7.14 Temperature behavior of the stacked DR 
(reference [17], Q1981 IEEE) 

An analysis of the oscillator circuit in Fig. 7.12 has been 

presented by Tsironis and Pauker [18]. We will follow their analysis 

with a slight change in notation in order to conform with the notation 

used earlier in this book. The common-source configuration of the FET 

constitutes a negative resistance (plus some reactance) at the gate 

port. The corresponding reflection coefficient r has a magnitude 
G 

larger than unity: 

The microstrip transmission line of characteristic impedance ZO is 

terminated at its far end by a chip resistor of the same value in order 
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to prevent any possible parasitic oscillation at an unwanted frequency. 

Looking from the gate port toward the left, the impedance presented by 

the passive circuit is equal to the characteristic impedance (50 ohms), 

except at resonant frequencies of the natural modes in the dielectric 

resonator where some sharp maxima may occur. 

The mode of operation is, of course, TEOl6 A simplified equivalent 

circuit for the position z = 0 (see Fig. 7.12) on the microstrip line is 

shown in Fig. 7.15. The coupling coefficient is denoted by n: 

so that the impedance in the vicinity of resonance is expressed by 

where the relative frequency is denoted by 6: 

f - f  
6 = 1  

fo 

Fig. 7.15 Equivalent circuit of the DRO from Fig. 7.8 

The unloaded Q factor of the DR mounted on the substrate is den0ted.b~ 

Qu, and the resonant frequency of the mode TEOl6 is denoted by fo. The 

reflection coefficient at z = 0 is computed as 
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(7.79) 

from which we obtain 

r = n 
R l+n+j2QU6 (7.80) 

The operating frequency occurs not far from the resonant frequency 

of the unloaded resonator 

of (7.80) is considerably 

so that the imaginary part in the denominator 

smaller than the real part: 

The reflection coefficient r is transformed along the microstrip 
R 

line of the length L into the following value: 

where B is the electric length between the resonator and the gate. The 

oscillation condition of the negative-resistance oscillator is usually 

expressed in the form 

where Z i  is the impedance of the passive circuit which contains the 

resonator (the reason for the subscript R here), and ZG is the impedance 

of the active device (which here is the gate port; thus, the subscript 

G). If the reflection coefficients are used in place of impedances, 

(7.83) becomes 

Substituting the values of r;( and rG, found earlier, results in 

The absolute value of (7.85) provides the oscillation amplitude, and the 
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phase angle provides the oscillation frequency. To analyze the frequen- 

cy stability, we need the phase of (7.85): 

~t is convenient to introduce the loaded Q factor, which is defined as 

In view of inequality (7.81), it is possible to simplify (7.86) as 

follows: 

which is the equation for determining the operation frequency of the 

system. Equation (7.88) will be the starting point for the study of 

temperature dependence of the system. 

When the temperature of the circuit varies, each term in (7.88) has 

a distinct physical interpretation. For instance, the term on the left- 

hand side, dG, is the phase of the reflection coefficient of the active 
device. As a function of temperature, dG is going to change consider- 

ably, and this change is an important factor in the overall stability of 

the operating frequency f of the oscillator. dG is a quantity which can 
be measured as a function of temperature by observing the active device 

alone. Tsironis and Pauker have measured a number of points dG vs. 
temperature, and then plotted a best-fit straight line through these 

points in order to determine the slope qG/dT. The measured values 

reported by Tsironis and Pauker are between 2000 and 3000 . 
rad/"C. 

The first term on the right-hand side of (7.88) is twice the phase 

shift in the microstrip line of physical length L. The second term on 

the right-hand side also has a clear physcial interpretation. Relative 

frequency 6 is defined by (7.78). When the temperature varies, both f 

and fo are influenced (recall that f is the operating frequency and fo 

is the resonant frequency of the unloaded resonator). Therefore, 
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Since f is nearly equal to fo, we can write 

where the temperature coefficients of frequency are defined as 

The value of the loaded Q factor which multiplies 6 in (7.88) can be 

measured with a network analyzer by observing the reflection coefficient 

r in Fig. 7.12 as a function of frequency. This measurement is known R 
as the reaction method, described in Ch. 2 and Ch. 10. 

As seen in (7.87), Q depends on QU and on the coupling coefficient 
L 

n.  The value of n may be adjusted by changing the lateral distance d 

between the resonator and the microstrip (see Fig. 7.16). Another con- 

venient adjustment is to lift the resonator away from the surface of the 

microstrip substrate. As a consequence, the losses in the ground plane 

are reduced, and the unloaded Q factor is increased. By placing the 

quartz 

Fig. 7.16 DR mounted on microstrip for oscillator application 

stacked resonator on a fused quartz spacer of height h = 0.5 mm rather 

than directly on the aluminum substrate, QU was increased from 600 to 
1000 (one of the examples quoted in [la]). Table 7.3 lists several 

values of the loaded Q factor as a function of distance d. The values 
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were read off the diagram of measured values in [la], and for that 

reason they may be somewhat inaccurate. 

Table 7.3 UlADED Q FACTOR AS A FUNCTION OF 
DISTANCE d IN FIG. 7.16 

d I O m m  1 0.4mm 1 0.8mm 1 1.2mm 

Q f o r h = O  L 
9 1 161 304 512 

Q for h = 0.5 mm L I 205 1 293 1 482 I 745 

To find the temperature variation of the operating frequency, one has to 

evaluate the differential of (7.88): 

Tsironis and Pauker have found that 9 and QL change very little with 

temperature, so that the terms dO/dT and dQL/dT can be ignored. 

Equation (7.93) thus simplifies, using (7.90), to the following: 

For temperature-stable operation, one requires rf = 0, which leads 

to the requirement: 

We have obtained an equation which tells us how to make the oscillation 

frequency independent of temperature. For a given device, the value of 

ddG/dT is fixed, but Q may be selected, almost at will, by adjusting L 
the coupling coefficient between the DR and microstrip line. Different 

combinations of QL and rfO may be tried with the idea of improving other 

properties of the oscillator, like constant output power or better 

tunability. 

As an example, for the measured phase drift d(G/dT = - 2600 
rad/'C, and the lateral distance d = 0.8 mm for a DR without a quartz 



370 DIELECTRIC RESONATORS 

spacer, Tsironis and Pauker quote the required temperature sensitivity 

of the DR to be 4.4 ppm/"C. If we take the value Q = 304 from Table L 
7.3 and substitute in (7.95), we obtain rfO = 4.27 ppm/"C. The dis- 

crepancy of 3 % is probably caused by our incorrect reading of Q from L 
the Tsironis and Pauker diagram. 

When we try to apply the above principles to a particular DRO 

design, we may run into the same difficulty of interpreting the manu- 

facturer's data as described in the previous section. Namely, we need 

to know rfO of the DR when it is mounted on a particular microstrip 

substrate, and possibly on top of a special quartz spacer. The manu- 

facturer's data on rfO have been obtained in a different test cavity, 

the shape of which is usually not even known to us. Then, how useful is 

such rfO data? 

If one had the information on the true value of r one could com- 
e '  

pute rfO for the DR mounted on the microstrip by using the methods 

described in Sec. 7.5. In the absence of such information, the only 

practical solution left to each user is to measure rfO of the DR in his 

particular environment. After all, such a measurement may not necessi- 

tate an extra expenditure of time or equipment, since the measurement in 

the temperature chamber must be performed anyway because of the need to 

measure ddG/dT. 
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Appendix 7.A COMMERCIALLY AVAILABLE MATERIALS 

Listed below are tables with detailed technical specifications of 

some materials which are currently available in the United States. The 

list of materials is not intended to be comprehensive. The main purpose 

of these tables is to give the reader an idea of what is typically known 

about properties of materials used in dielectric resonators. The 

dimensions of the actual resonators available from stock are not listed 

here because this would take considerable additional space. 

When certain data are not specified by the manufacturer, the 

corresponding slot in the tables is listed as "unspec.". 

Manufacturer: Murata Erie North America, Inc 

Brand: Resomics-K series 

Composition: (Ba,Pb)Nd2Ti5014 

Qd = 5000 at 1 GHz 

Frequency range: 0.8 to 5 GHz 

a = 8.5 f 0.42 ppm/'C 

Type 

unspec . 
unspec . 

90 f 2.7 

90 f 2.7 

r e  (ppWoC) 

-29 f 4 

-17 + 4 

~f (ppm/OC) 

0 f 2 

+6 f 2 
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Manufacturer: Murata Erie North America, Inc. 

Brand: Resomics-M series 

Composition: (Zr,Sn)TiOq 

Qd = 15000 at 4 GHz 

Frequency range: 1 to 12 GHz 

a = 6.5 + 0.3 ppm/'C 

*~ote: Available also in rf tolerances of f 1 and f 0.5 ppm/"C 

.................... 

Manufacturer: Murata Erie North America, Inc. 

Brand: Resomics-U series 

Composition: (Zr,Sn)TiOq 

Qd = 10000 at 4 GHz 

Frequency range: 1 to 12 GHz 

a = 6.5 2 0.3 ppm/'C 

*~ote: Available also in rf tolerances of f 1 and f 0.5 ppm/"C 
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Manufacturer: Murata Eire North America, Inc. 

Brand: Resomics-S series 

Composition: Ba(Zr,Zn,Ta)03 

Qd = 10000 at 10 GHz 

Frequency range: 5 to 25 GHz 

a = 10.2 + 0.5 ppm/"C 

*~ote: Available also in rf tolerances of f 1 and f 0.5 ppm/'C 

Manufacturer: Murata Erie North America, Inc. 

Brand: Resomics-X series 

Composition: Ba(Zr,Zn,Ta)03 

Qd = 14000 at 10 GHz 

Frequency range: 5 to 25 GHz 

a = 10.2 f 0.5 ppm/'C 

*~ote: Available also in r, tolerances of + 1 and + 0.5 ppm/'C 
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Manufacturer: Trans-Tech, Inc. 

Brand: Trans-Tech 

Composition: Zr/Sn Titanate 

Qd > 10000 at 4 G H z  

Frequency range: 2 to 45 GHz 

a = 5.6 f unspec. ppm/"C 

Manufacturer: Trans-Tech, Inc. 

Brand: Trans-Tech 

Composition: Barium Tetratitanate 

Qd > 10000 at 4 G H z  

Frequency range: 2 to 45 G H z  

a = 9.5 f unspec. ppm/'C 

Type 

D-8516 

D-8515 

D-8514 

D-8513 

D-8517 

Type 

D-8512 

7f (PP~/OC) 

-3 f 0.5 

0 f 0.5 

+3 f 0.5 

+6 f 0.5 

+9 f 0.5 

35.9 + 0.5 
36.0 + 0.5 
36.0 f 0.5 

36.9 f 0.5 

36.4 f 0.5 

7 ,  (ppm/"C) 

+1.6 f unspec. 

-6.9 f unspec. 

-9.7 + unspec. 
-13.1 f unspec. 

-19.0 f unspec. 

38.6 f 0.6 

(ppm/"C) 

-10.4 f unspec. 

~f (ppm/"C) 

+4 f 0.5 
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Manufacturer: Thornson-CSF Components Corp 

Brand: E36 

Composition: (Zr,Sn)TiOq 

Qd = 4000 at 10 GHz 

Frequency range: 2 to 100 GHz 

a = 5 f lpprn/"C 
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Chapter 8 
COUPLING 

Pierre Guillon 

8.1 DR Mounted on Microstrig 

The use of dielectric resonators in microwave circuits necessitates 

accurate knowledge of the coupling between the resonator and the micro- 

wave circuits (lines, waveguides, loops, etc.) and also of the mutual 

coupling between two adjacent dielectric resonators. In this chapter we 

study these two kinds of coupling successively. 

We start with a discussion of coupling of the TEOl6 mode in the die- 

lectric cylindrical resonator with a microstrip line. It is well known 

that the TEOl6 mode in the dielectric resonator can be approximated by a 

magnetic dipole of moment M 111. The coupling between the line and the 

resonator is accomplished by orienting the magnetic moment of the reso- 

nator perpendicular to the microstrip plane so that the magnetic lines 

of the resonator link with those of the microstrip line [ 2 , 3 , 4 ] ,  as 

shown in Fig. 8.1. 

l' 

Fig. 8.1 Coupling between a microstrip line and a dielectric resonator 
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The dielectric resonator placed adjacent to the microstrip line 

operates like a reaction cavity which reflects the RF energy at the 

resonant frequency. The equivalent circuit of the resonator coupled to 

the microstrip line is shown in Fig. 8 . 2 ,  [5], ( 6 ) .  In this figure, 
Lr' 

Cr, R are the equivalent parameters of the dielectric resonator, L1' 
C1, R1 those of the line. The magnetic coupling is characterized by the 

mutual inductance L m' 

Fig. 8 . 2  Equivalent circuit of the dielectric resonator 
coupled with a line 

In the coupling plane, the network of Fig. 8 . 2  can be simplified to 

that of Fig. 8 . 3  (the line is assumed to be without losses). Further- 

more, the equivalent circuit in Fig. 8 . 3  can be put in the form shown in 

Fig. 8 . 4 .  

" - 
Fig. 8 . 3  Equivalent circuit in the plane of the coupling 

The transformed resonator impedance Zt in series with the trans- 

mission line can be expressed by 
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Fig. 8 . 4  Simplified equivalent circuit 

Around the resonant frequency, wL can be neglected and 2 becomes 1 t 

where the following notation has been used: 

'rWo Qo = - 1 and wo - Rr JE 
At resonant frequency X = 0 and the transformed impedance becomes 

real : 

Equation ( 8 . 2 )  indicates that Fig. 8.4 can be represented by the 

simple parallel tuned circuit, such as shown in Fig. 8 . 5 .  L, R, C 

satisfy the following equations: 
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(8.5) 

Fig. 8.5 Final equivalent of a dielectric resonator coupled 
with a microstrip line 

The coupling coefficient n is defined by 

Using R = 2 ZO, we obtain ext 

Let Q be the external quality factor which characterizes the 

coupling of the resonator with the microstrip line, and let ZO be 

characteristic impedance of the line. Then, 
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To determine the coupling coefficient completely it is necessary to 

evaluate the Q factor as a function of distance d between the line and 

the resonator. The factor which characterizes this variation in (8.10) 

Two methods will be presented for evaluation of Q The first of e' 
them is called H / I d  [4]. 

Let I be the current flowing in the microstrip line. The induced 

voltage e in the resonator is 

The magnetic field H due to the current I flowing in the microstrip 

line satisfies 

E and are respectively the electric and magnetic fields calculated - 
at the center of the loop of area S. For a small loop the value of the 

magnetic field can be approximately taken to be constant over the area 

of the loop. From (8.11) and (8.12), we can write L in the following m 
form: 

Let M be the magnetic moment of the loop. If the resonator current is 

Ir, the magnetic moment is 

Let W be the stored energy in the dielectric resonator: 

Substituting (8.14) and (8.15) into (8.13), one obtains 
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The H/I ratio permits one to obtain a relation between L~ /L (and m r 
so Qe) and the distance separating the line and the resonator. 

Two procedures can be used to evaluate the H/I ratio. 

procedure (al. A first, simplified, procedure assumes that the 

magnetic field value results from two currents: the current flowing in 

the strip (width w) and the current flowing in the ground plane supposed 

uniformly distributed over a width 3w [4]. Using these assumptions we 

can determine an approximate relation between H/I and the distance d as 

follows: 

Procedure (bl. Another expression for H/I can be derived by using 

the finite element method. Using the quasi-TEM approximation for the 

mode propagation in the microstrip line we can evaluate the current 

density in the strip and in the lower and upper plane of the metallic 

structure. From these values, we deduce the amplitude of the magnetic 

field H at any point P of the structure due to the current densities. 

The value of the ratio H/I depends on substrate permittivity and thick- 

ness, and on the distance d between any point P of the structure and 1 
the line. An example of computed values (H/I) obtained by using the 

finite element method is given in Fig. 8.6. 

The second method of evaluating Q is called the maenetic field flux 

method. Again, the dielectric resonator acting in the TEOl6 mode is 

modalled by a magnetic dipole of moment M. 

Let I be the current flowing in the dielectric resonator. The r 
voltage induced in the microstrip line by this current I is 

This induced volteige can also Be computed from the magnetic flux 

through the cross section of the microstrip substrate (see Fig. 8.7): 
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ipg 
I F  

\ h s ~  
\ MICROSTRIP SUBSTRATE . \ 
'. \ 
\ \ - h,=0.8 mm --- -- 1.58mm 

2.0 mm 

Fig. 8.6 H/I as a function of dl (reference [5], Q1981 IEEE) 
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SUBSTRATE 

Fig. 8.7 Magnetic flux linkage of the resonator field into 
the microstrip line 

Combining (8.18), 

coupling is expressed 

(8.19) and (8.15) and substituting into (8.10) the 

by 

Note: In each method W and should be evaluated as follows: 

1 
w = 7 eo Ci E h; dVi -i 

'i 

1 M = - j w  e ci I ti x hi dVi 

vi 

wh+e 

/ ei = relative permittivity of the medium i, 

E. = electric field vector in the medium i, 
-1 

R = distance vector, - 

V. = volume of the medium i. 

M and W can be computed by using one of the methods presented in the 
previous chapters to evaluate the electromagnetic parameters (frequen- 

cies, fields, etc.) of shielded dielectric resonators. 
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The magnetic field flux method is easier to use than the H/I method, 

since with the same program we can obtain the electromagnetic parameters 

and the external coupling values successively. 

Figures 8.8 and 8.9 present the Q variation as a function of the 

distance between the line and the resonator computed by the H/I and the 

field flux method respectively. M and W have been computed here by 
using the numerical finite difference method. 

The dielectric resonator coupled with the microstrip line is identi- 

cal to a parallel resonant circuit placed in series with the line (Fig. 

8.5). Such a circuit can be conveniently described in terms of the 

scattering parameters. Let 0 be the electrical length of the microstrip 

line, as shown in Fig. 8.10. Then, the parameters of the scattering 

matrix are [5] : 
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MICROSTRIP 

Fig. 8.8 External Q factor as a function of the distance between the 
line and the resonator, computed by the (H/I) method 
(reference [ 5 ] ,  01981 IEEE) 
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RESONATOR: D =  14 mm 
Hz7.5 mm 
Er=35 

SUBSTRATE : h,  = O.8mm 
Er ~ 2 . 5 4  

MICROSTRIP 

I 

DR 

Fig. 8.9 External Q factor as a function of the distance between the 
line and the resonator, computed by the magnetic flux method 
(reference [16]. 01985 IEEE) 

Fig. 8.10 Distributed equivalent circuit (reference [5]) 
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8.2 DR in a Wave~uide Below Cutoff 

A cylindrical resonator is placed inside an evanescent rectangular 

waveguide A, of width b and height a'. The two ends of this waveguide 

are connected to two propagating waveguides B of the same width but of 

different height a, shown in Fig. 8.11. The dimensions are chosen in 

such a way that at the resonant frequency of the resonator, waveguide A 

is below cutoff while the two end waveguides B propagate. The cylindri- 

cal dielectric resonator is placed at a distance B from one end of the 

discontinuity junction defined at z' = 0. When the propagating wave- 

guide is excited in the TEIO mode, the dielectric resonator is excited 

in the TEOls mode. 

Fig. 8.11 Coupling between the dielectric resonator inserted into a 
cutoff waveguide and a propagating waveguide 

By the principle of reciprocity, the fields in the waveguide below 

cutoff can be considered as that excited by the electric current density 

J in the dielectric resonator. The waveguide below cutoff is excited at 

one end and loaded at the other end by a load impedance Z. Under mis- 

match conditions, the effects of this load and the waveguide disconti- 
u' 

nuity can be represented by the presence of a reflection coefficient at 

the two waveguide junctions. Due to the symmetry of the waveguide 

structure considered, we can represent it by the model shown in Fig. 

8.12. 
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Fig. 8.12 Distribution of sources in the waveguide 

In this figure, pln and p are the reflection coefficients, re- 2n 
spectively, at z' = 0 and z' = d when the waveguide is excited at 

z' > d. Taking into account the multiple reflections at the waveguide 

junctions, the nth normal mode electric and magnetic fields in region I 

are 

The vectors e ezn, htn, hzn are the transverse components and z 
-tn' 

components of the nth normal mode electric and magnetic fields, is 

the propagation constant of the mode n, and 

z': is the wave impedance in the cutoff waveguide. 

Similarly, when the waveguide is excited at z' < 0 in region 11, the 

modal fields can be expressed by 
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The fields radiated by the source in L1 < z' < L2 may be expressed 
as an infinite sum of waveguide modes: 

V is the volume containing the source J. 

If we assume that only the dominant mode is excited, all higher- 

order excited modes are rapidly attenuated in the waveguide below cut- 

off, and the resonator is far away from the second sectional plane 

ppn = 0, then the field waves radiated by the resonator are very much 

attenuated, and none of them is reflected from z' = d. 

From (8.23) to (8.26), the electric field distribution at the 

sectional plane z' = 0 generated by the current source J is expressed as 

follows: 
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To determine the external Q factor of the dielectric resonator in 

the evanescent rectangular waveguide, we need to calculate the power 

radiated from the resonator into the waveguide below cutoff. We simpli- 

fy the problem by expressing the field excited in the waveguide in terms 

of an electric field distribution at the cross section So located at 

z '  = 0, as shown in Fig. 8.13. The equivalence principle is then ap- 

plied. The cross section So can be replaced by a perfectly conducting 

plane supporting the magnetic current source MS. This current source 

Fig. 8.13 Equivalent surface current at the junction of two waveguides 

helps to create the electric field E thus 
-PC' 

In the above, 6 = -2 is the unit vector, normal to So, pointing out from 

the waveguide below cutoff. 

The field (E ) radiated into the waveguide below cutoff is given r '  r 
by 
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The external Q factor Qe of the dielectric resonator in the wave- 

guide below cut-off is then expressed as 

Substituting into (8.33) the value of P from (8.32) and W from 

(8.21), we can evaluate Q as a function of the distance L between plane 

S and the resonator. The values of Q shown in Figs. 8.14 and 8.15, 
0 e' 

have been obtained by using the approximate approach for electromagnetic 

parameters which permits definition of W and Pr. 

4Qe 
loo0 - 

- 
- 
- 
- 
- 

- 

RESONATOR : D= 14 mm 
H= 7 mm 
+36 

WAVEGUIDES: a'= 13 mm 
a ~ 4 7 . 5  mm 
b =22.5 mm 

RESONANT FREQUENCY 4 

Fig. 8.14 External Q factor of the dielectric resonator inserted into 
the evanescent waveguide (reference [lo], 01982, IEEE) 
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Fig. 8.15 Influence of the off-axis displacement of the DR in the cut- 
off waveguide (reference [lo], 01982 IEEE) 
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8.3 Loop Coupling [11] 

In this section, we consider the case of the end coupling between a 

magnetic loop and a dielectric resonator housed in an evanescent me- 

tallic waveguide (see Fig. 8.16). 

Fig. .electric resonator 

The coupling between the loop and the TEOl6 mode of the dielectric 

resonator can be represented by the equivalent network shown in Fig. 

8.17. 

Fig. 8.17 Equivalent circuit of the magnetic loop coupling 

L is the self inductance of the magnetic loop of diameter d in 
P 

which flows a current I The input impedance at the resonance is given 
P. 

by 
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The external Q factor is given by 

2 
For evaluation of the factor (Lr/Lm) in terms of field H, we can 

consider the field induced in the magnetic loop by the evanescent field 

of the dielectric resonator (in free space), and so evaluate the mag- 

netic flux through the cross section S of the loop. With this as- 

sumption, the factor Qe is given by 

2 is the characteristic impedance of the coaxial cable leading to 
0 

the loop. Alternatively, we can compute the magnetic field at the 

center of the loop H due to the waveguide evanescent modes excited by 
P 

the magnetic dipole located at the center of the resonator. 

For example, in the case of the transverse orientation of the die- 

lectric resonator in a rectangular waveguide, and considering only the 

mode which has the lowest cut-off frequency, we obtain the following 

expression for Qe: 

where 

and 

In the above, h is normalized x component of the magnetic field 
X 

within the rectangular waveguide, and s is distance between the reso- 

nator and the loop. Furthermore, 
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where fc is the cutoff frequency of the TEIO rectangular waveguide 

mode. Finally, 

h x =  J - 
a.b Z10 sin a 

where a10 is the attenuation constant of the TE mode in the eva- 
1,o 

nescent waveguide of the rectangular cross section with sides a and b. 

Figure 8.18 presents the values of the coupling coefficient between 

the loop and the resonator. 
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EVANESCENT 

Fig. 8.18 External Q factor as a function of the distance between the 
loop and the resonator (reference [Ill, Q1982 IEEE) 
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8.4 DR in a Dielectric Imaee Guide (121 

Dielectric guides are used to realize microwave components at milli- 

meter wave frequencies [25]. Inserting the dielectric resonators in 

such guides will result in integrated dielectric components at these 

frequencies. 

The cylindrical dielectric resonator operating in the TEOl6 mode is 

coupled to the EHll mode of the dielectric image guide by orienting the 

resonator axis perpendicular to the guide propagation axis (see Fig. 

8.19). 

MAGNETIC FIELD DR 

DIELECTRIC IMAGE GUIDE 

Fig. 8.19 Coupling between a DR and a dielectric image guide 

Figure 8.20 gives the appropriate lumped equivalent circuit. L is 
m 

the mutual inductance which characterizes the magnetic coupling. 

Fig. 8.20 Equivalent circuit of the coupling to the image guide 

At the resonant frequency, the input impedance calculated in the 

coupling plane is given by (8.34). The voltage induced in the 
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dielectric guide by the current Ir flowing in the dielectric resonator 

is given by (8.18). This voltage can also be calculated by evaluating 

the magnetic flux linkage between the guide and the resonator: 

The coefficient C takes into account the misalignment between the 

magnetic field vector H of the TEOl6 mode of the dielectric resonator -r 
and that of the dielectric guide H [12]. Thus, 

-g 

where S is the cross section shown in Fig. 8.19. 

The external quality factor defined by (8.10) has been evaluated as 

a function of the distance between the guide and the resonator. In this 

case ZO is the characteristic impedance of the dielectric image guide 

defined by the following expressions: 

The symbols Ex, H Hx denote the field components of the EHll die- 
Y' 

lectric guide mode. Quantities C and Q as functions of the distance 

between the guide and the dielectric resonator are presented in Figs. 

8.21 and 8.22, respectively. 
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Fig. 8.21 Misalignment coefficient as a function of the position of the 
DR in the guide (reference [12], Q1984 IEEE) 

Fig. 8.22 Qe as a function of the distance between the dielectric guide 
and the dielectric resonator (reference [12], 01984 IEEE) 
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8.5 DR on a Finline 

Finline is used for millimeter frequencies (around 90 GHz) [26]. At 

these frequencies, the dimensions of cylindrical resonators are very 

small, and so we replace the cylindrical resonator by a spherical one. 

A chart of the several TE and TM frequency modes for a shielded spheri- 

cal dielectric resonator is given in Fig. 8.23. 

Fig. 8.23 Mode chart of a shielded dielectric sphere 
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Figure 8 . 2 4  shows the position of the spherical dielectric resonator 

in the finline structure. 

Fig. 8 .24  Coupling between the finline and the dielectric sphere 

Using the same procedure as the one described earlier for microstrip 

line, we first establish an equivalent network. We evaluate the input 

impedance of the system so that we can deduce a relation for the ex- 

ternal quality factor which is identical to that given in ( 8 . 2 0 ) .  

In this particular case, the magnetic flux calculated over the angle 

0 in Fig. 8.25  is 
1 

In ( 8 . 2 0 ) ,  we use ZO defined as follows: 

An example of the coupling coefficient n as a function of d is given 

in Fig. 8 . 2 5 .  
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Fig. 8.25 Coupling coefficient as a function of the distance between 
the dielectric sphere and the finline 
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8.6 Mutual Cou~line Between Two DRs in a Waveeuide Below Cutoff 

For the applications of dielectric resonators in microwave filters, 

it will also be necessary to study the coupling between two dielectric 

resonators. To analyze the coupling, we first establish an equivalent 

circuit for the system and then we perform the electromagnetic field 

analysis to find a relation between the coupling coefficient, k, and the 

spacing between the two resonators. For this approach, we must take 

into account two contributions: 

- that due to the evanescent field of the waveguide excited by the 
dielectric resonator assumed to be a magnetic dipole, and 

- that due to the evanescent field outside the dielectric resonator 
which contributes to the coupling coefficient when the two reso- 

nators are very close to each other. 

Figure 8.26 shows two resonators placed in a waveguide below cutoff. 

Two dielectric resonators operating in the TEOl6 mode, separated by a 

distance s, can be modeled by the two magnetic dipoles [I]. These 

dipoles can be represented by conducting loops in an arbitrary en- 

closure, as shown in Fig. 8.26. Let L be the mutual inductance between 
m 

Fig. 8.26 Two dielectric resonators inserted into an 
evanescent waveguide 

the adjacent loops and V2 is the induced voltage in loop 2 due to il in 

loop 1: 

The induced voltage V2 is also given by the following fundamental 

integral relationship: 
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where Y2 is the magnetic field value in loop 2 due to the current in 
loop 1. 

Combining (8.48) and (8.49) and taking into account (8.14) and 

(8.15), we define the coupling coefficient, k, between two identical 

resonators by 

The E and H fields of a given waveguide mode are obtained from 

equations (8.25) and (8.26). The amplitude for the waves of type and 

order p, excited by the magnetic dipole, can be expressed easily by [ 2 7 ]  

+ H- H are the normalized magnetic fields of mode p traveling in +z 
P' P 

and -z directions, respectively. The different cases are now pre- 

sented. 

f The waveguide 

modes which have their H components in the direction of _M (magnetic 

dipole) are the TE modes with m odd and n even. The following formula 
mn 

for the coupling coefficient between a pair of identical x-directed mag- 

netic dipoles on the central longitudinal axis is obtained by appli- 

cation of (8.50) and (8.51): 

where a is the attenuation constant of the m,n mode. Of all the TEmn mn 
modes with m odd and n even, TEIO is the one which has the lowest cutoff 

frequency and therefore the lowest attenuation constant. Thus, at a 

sufficient longitudinal distance from the magnetic dipole, the total 
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Fig 8.27 Transverse orientation of the dielectric resonator in a 
rectangular waveguide 

field may be represented with a good accuracy by the TEIO field alone, 

so that (8.52) simplifies to 

where a and b are the dimensions of the rectangular waveguide as shown 

in Fig. 8.27. 

For this transverse orientation the coupling coefficient k as a 

function of the distance between adjacent resonators is presented in 

Fig. 8.28. 

Axial orientation in a rectanvular waveeuide (Fie. 8.29). Only the 

modes having h f 0 (i.e., TEmn modes) will contribute to coupling. In 

the case of disks centered in the cross-section TE modes of odd order mn 
are not excited. However, if the disks are off center all order modes 

except m = n = 0 are significant. 

Axial orientation in a circular waveeuide (Fie. 8.30). Because of 

the cylindrical symmetry only circular electric modes designated TE 
On 

are excited by the equivalent magnetic dipoles. 

Transverse orientation in a circular waveeuide. It can be directly 

concluded that the transverse fields contributing to coupling with the 

resonators located at waveguide center will be H for TEmn modes. The 

modes which can be taken into account are the TEln modes where n = 

l,2,3 . . .  (In general, we can limit ourselves to m unity for r = 0). 

An alternative approach can be used to study the coupling between 

adjacent dielectric resonators. For this purpose, the dielectric reso- 

nators are represented by a distribution of displacement current J and 
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k 

RESONATOR : 
D =8.5 mm 
H =5.6 mm 
er=37  

\ WAVEGUIDE : 
a = 28.5 mm 

Fig. 8.28 k as a function of the distance between two resonators 
(transverse orientation in a rectangular waveguide) 

Fig. 8.29 Axial orientation of the dielectric resonator in a 
rectangular waveguide 
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Fig. 8.30 Axial orientation of the dielectric resonator in a 
cylindrical waveguide 

the method used to calculate the coupling coefficient k is based on the 

perturbation theory [10,14]. 

Let E. and H be the unperturbed fields inside the waveguide below 
-1 -i 

cutoff, defined in the region 0 < z' < d (see Fig. 8.31), where d is the 
length of the evanescent waveguide. 

Fig. 8.31 Two dielectric resonators inserted into an evanescent 
waveguide excited by a propagating waveguide 

Ei and H are the fields excited by the equivalent magnetic surface - -i 
current M at z' = 0, taking into account the reflection coefficient at -S 
the waveguide discontinuity junction. Let H, be the total perturbed 

fields of the waveguide when the second resonator is placed at a 

distance s from the first resonator. Writing Maxwell's equations for 

the unperturbed fields, we have 
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where w is the unperturbed resonant frequency. 
i 

When the second resonator is introduced, the fields are perturbed. 

Let w be the new resonant frequency: 

After some calculations, we derive the small change in frequency due to 

the presence of the second resonator: 

If a weak coupling is assumed, the field distribution inside the 

waveguide varies very slightly from the unperturbed fields, and so we 

can conclude that: 

The interstage coupling k is defined by 

Taking into account the field expressed by (8.25) and (8.26), we 

have drawn in Fig. 8.32 the variation of k as a function of distance s. 

Another contribution must be taken into account when evaluating the 

coupling between two adjacent dielectric resonators. It characterizes 

the direct coupling between the resonators, namely, the coupling 

achieved by the evanescent field outside the resonators [15]. When this 

computation is performed, both resonators are assumed to be situated in 

an open space. 
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RESONATOR : 
D= 14 mm 
H= 7 mm 
f,= 4GHz 

WAVEGUIDE : \ a = 47.5 mm 
a'= 13 mm 

Fig. 8 . 3 2  k as a function of the distance between two resonators 
calculated by using the perturbational method 

The expression for the coupling coefficient k is derived from (8.48) 

and (8.49): 

In the above, V is the induced voltage in loop 2  due to the current I1 2 
flowing in loop 1. It can be computed as follows: 
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If we replace the current loop with a dielectric resonator, we can 

easily state that the following is true: 

E2 is the electric field in place of the second resonator due to the 
first resonator. J is the current density in its volume V. Thus, the 

final expression for the coupling coefficient could be written as 

Quantities W, J, E can be defined by many methods. Using the approxi- 
2 

mate electromagnetic approach [ a ] ,  we have evaluated k as a function of 
S. It can be seen in Fig. 8.33 that generally the coupling between ad- 

jacent resonators is due to two contributions: one is due to the eva- 

nescent dielectric resonator field, and the other is due to the eva- 

nescent field in the waveguide below cutoff. 
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Fig. 8 . 3 3  Contributions of  the different f i e lds  to  the coupling between 
two adjacent die lectr ic  resonators 
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8.7 f l  fl u ou n e w e n  

The determination of the coupling between resonators mounted as 

shown in Fig. 8.34 can be deduced from a knowledge of coupling to micro- 

strip (recall Fig. 8.1). The details are given in References (61 and 

[16]. The equivalent circuit of this system is presented in Fig. 8.35. 

MICROSTRIP 

Fig. 8.34 Dielectric resonators coupled by means of a microstrip 
transmission line 

Fig. 8.35 Equivalent circuit of microstrip-coupled 
dielectric resonators 

The coupling coefficient k between the two microstrip-coupled reso- 

nators can be obtained by calculating the open circuit impedance parame- 

ters of the two circuits shown in Figs. 8.35 and 8.36 and by identifying 

the corresponding elements. 

The condition for equivalence between the two circuits can be easily 

determined to be 

where X is the wavelength in the microstrip. 
g 
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Fig. 8.36 Lumped equivalent circuit 

For the values of L given by (8.62), the coupling between 

resonators is 

RESONATORS 

the two 

where Qel and Qe2 are the external Q-factors of the resonators. Thus, 

for a positive coupling coefficient, the line length L must be one- 

quarter wavelength long, and for a negative coupling it must be three- 

quarters of a wavelength long. The magnitude of the coupling is con- 

trolled by the height of the resonator above the microstrip substrate 

and also by the distance between the line and the resonator. Figure 

8.37 provides some values of k for various spacings. 
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Fig. 8.37 k as a function of the distances of the resonators from 
the line (reference [16], 01985 IEEE) 
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8.8 Mutual Cou~line Between Two DRs Throueh an Iris 

Figure 8.38 shows two symmetrically oriented identical cavities, A 

and B, having a common thin wall containing a small aperture. This con- 

figuration has been studied in references [17], [la], and [19]. When 

the cavities are coupled by a small iris, the resonant frequencies of 

the system will be w and w - Aw. 
a a 

Fig. 8.38 Cavities coupled by a small 

When the tangential magnetic fields are 

hole in the common wall 

pointing in the same di- 

rection on either side of the iris, the cavities will oscillate at the 

frequency wa,  which is the natural resonant frequency of each isolated 

cavity. When the tangential magnetic fields are pointing in opposite 

directions on the two sides of the coupling iris, the natural resonant 

frequency will be w - h. When Au is small, the coupling coefficient 
a 

is defined as 

where Ma is the magnetic moment of the coupling aperture, H is the tan- 

gential magnetic field at the center of the hole, and E is the normal 

mode electric field in the cavity. Both cavities are assumed to be 

filled with air. 

The two identical cavities are represented by parallel L-C resonant 

circuits coupled by an iris which is represented by a reactance Xc. The 

reactance X may be capacitive or inductive, depending upon the type of 

coupling between the two cavities. For the magnetic coupling, (8.64) 

becomes 
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and for the inductive coupling, ( 8 . 6 4 )  gives 

Symbols Pm and P denote the magnetic and the electric polarizabilities 

of the aperture; Ean and Hat are the electric and magnetic field values 

evaluated in the aperture. 

Figures 8 . 3 9  and 8 . 4 0  present the coupling of two dielectric reso- 

nators using an iris. The resonators operate in the TEOl6 and HEMlls 

modes, respectively. A thickness correction and a large-aperture effect 

can be introduced for the polarizability of an aperture connecting two 

cavities, which will not be done here. 
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I SLOT 

Fig. 8 .39 k as a function of the s l o t  length for  the TE016 mode 
(reference (191, 01980 AEU) 
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lo-: 

16' 

lo" 

10" 

SLOT WIDTH: 2mm 
WALL THICKNESS: 0.5mm 

a = 8  mm 
H = 8.5 mm 
h, = 3.2 mm 
H, = 25 mm 

1 . . . . 1 . .  . . I . . (  

5 10 15mm 

Fig. 8 .40  k as a function of the s lo t  length for the HEM116 mode 
(reference [ 2 4 ] ,  01985 Eur. Microwave Conf.) 
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8.9 Dual Modes 

In a shielded cylindrical dielectric resonator, a number of degener- 

ate modes with identical natural frequencies can be found. Any pertur- 

bation of the electromagnetic fields will destroy the independence of 

some of the modes and act to couple the energy between them. In Fig. 

8.41, two metal coupling screws have been inserted into the shield con- 

taining the resonator in such a position as to cause the energy con- 

tained within the resonator to split into a pair of orthogonal modes. 

COUPLING SCREW - , .  TAL ENCLOSURE 

--- - + -  - - -  

Fig. 8.41 Coupling of two orthogonal modes in a dielectric resonator 

It is possible to couple energy from one mode into the other one, 

and adjust the coupling screws until the desired coupling coefficient 

between resonant modes is achieved [20]. 

Following the procedure employed by Slater [22], the coupling coef- 

ficient k between the degenerate modes i and j can be derived as 

follows : 
i l 

where V is the volume of the perturbation. Ei, Ej, Hi, H are the 
j 

electromagnetic fields of i,j modes of the original structure. For a 
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small aperture, the perturbed field is very nearly equal to the original 

one. 

Figure 8.42 shows the variation of the factor k as a function of 
i j 

the distance between the screw and the resonator. The mode used here is 

the hybrid mode HEMllK Such a coupling permits realization of a two- 

pole filter with only one resonator [20]. 

Fig. 8.42 Coupling coefficient for dual modes in a dielectric resonator 
(reference [24], 01985 Eur. Microwave Conf.) 
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8.10 Other Confipurations 

In this chapter on coupling we have considered essentially the TE 
016 

mode of the dielectric resonator. Some considerations concerning hybrid 

mode HEMll6 have also been presented. 

In addition, the TMOl6 mode can also be used in microwave appli- 

cations [23]. This mode can be modeled by an electrical dipole moment 

P. The excitation of the TMOl6 mode can be achieved via a microstrip 

line (see Fig. 8.43). In Fig. 8.44, we give the equivalent network of 

the coupling system. 

MICROSTRIP 1 2 11 

Fig. 8.43 Coupling of the Tt4016 mode and a microstrip line 

Fig. 8.44 Equivalent circuit of the coupling between the T416 mode and 
the microstrip line 

The external quality factor now satisfies [23]: 



where W and & are the stored energy and the electric field of the 
TMOl6niode, respectively. 

The variation of Qe as a function of the distance between the micro- 

strip line and the resonator is presented in Fig. 8.45. 

Fig. 8.45 Qe as a function of the distance between the line and the 
TM016 resonator (reference [23], 01985 IEEE) 
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The TMO16 mode of a dielectric resonator inserted into an evanescent 

waveguide can be excited by the TEIO mode of a propagating waveguide in 

the manner shown in Fig. 8 . 4 6 .  

PROPAGATING - 
WAVFCI IlnF 

Fig. 8 . 4 6  Coupling between the TM016 mode in the dielectric resonator 
and a propagating waveguide 

The external quality factor of such a structure can be evaluated by 

using the same procedure as that used for the TEO16 mode. An example of 

Qe values encountered in practice is given in Fig. 8 . 4 7 .  

Finally, we can also calculate the coupling between the two adjacent 

dielectric resonators operating in the TMO16 mode. We can show that in 

this case only the evanescent fields of the dielectric resonators con- 

tribute to the coupling coefficient k: 

EZ1 and EZ2 are the exterior and interior longitudinal components of 

the electric field in the dielectric resonator. 
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Qe 

loo( 

IOC 

Fig. 8.47 External Q factor as a function of the distance between the 
dielectric resonator and the junction plane of the two 
waveguides (reference (231,  01985 IEEE) 

The coefficient k is a function of the distance S between the two 

resonators, as can be seen in Fig. 8.48. 
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Fig. 8.48 Coupling between two adjacent dielectric resonators operating 
in the TM016 mode (reference [23], 01985 IEEE) 
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Chapter 9 
FILTERS 

Pierre Guillon 

9.1 Jntroduction 

In the past four decades, tremendous advances have been made in 

microwave filter technology. There are filter types for almost every 

usage that can be realized in waveguide and in microstrip technology. 

Dielectric resonators hold the promise of further enrichment of micro- 

wave filter designs. In fact, dielectric resonator filters have also 

been designed and used in radio systems as low as 1 GHz. In this 

chapter, the filter design principles, practical design considerations, 

and examples of dielectric resonator filters are presented. 

The procedure for filter design is described as follows. Usually, 

we have to realize a microwave filter for which we know the type, the 

bandwidth, and the center frequency. Following the well established 

design principles, the external Q (which defines the input and output 

coupling) and the coupling coefficient, k 
j ,j+l' 

between two adjacent 

resonators are computed according to the filter specifications. To 

relate these values to the physical dimensions of the microwave die- 

lectric filter, we have to compare these theoretical values of Q and 

k 
j ,j+l 

to those obtained earlier in Ch. 8. 

First, we will briefly review the filter design procedure such as 

described in [I]. Consider a typical low-pass prototype filter shown in 

Fig. 9.1 having a Chebyshev response. The attenuation is given by 

for W '  < W '  1 
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~,=g; 

Rb=gjTr+TjL- ' ' 'F/R n+l = 

... g m 

n odd 

n even 

Fig. 9.1 Low-pass filter and its low-pass prototrpe Chebyshev response 

[ 
2 L~(w') = 10 ~ o g ~ ~  1 + e cosh (n cosh-I (9.2) 

for w' > o; 

where 
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LAr = pass-band ripple in dB 

W' = operating frequency of the low-pass prototype 

wi = equal ripple cutoff frequency 

n = number of reactive elements. 

Band-pass filters can be obtained from the low-pass prototype by a 

frequency transformation: 

where W is the fractional bandwidth: 

and wo is the center frequency: 

while wl, w2 are the frequency band limits of the band-pass filter. 

Figure 9.2(a) shows the band-pass filter obtained by a low-pass to 

band-pass transformation and Fig. 9.2(b) shows the corresponding band- 

pass filter response. Introducing the impedance inverters into the 

circuit, the ladder-type band-pass can be converted to the type which 

contains only series-tuned circuits Xi(w), as shown in Fig. 9.3. 

An ideal impedance inverter is essentially a quarter-wave trans- 

former of characteristic impedance K. It has an interesting property 

such that when it is terminated in an impedance ZB at one end, the im- 

pedance looking in at the other end is Z A: 

Although the inverters used in practice are frequency sensitive and the 

resonators X (w) are generally not lumped, the equivalent network in i 
Fig. 9.3 gives an approximation which is correct for narrow bandwidths. 

The external Q's and coupling coefficients of the band-pass filter 

having series type resonances are related to the prototype elements by 
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n odd 

n even 

Fig. 9.2 Band-pass filter and its band-pass filter response 
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Fig. 9 . 3  Band-pass filter using impedance inverters 

(Qe)in and (Qe)out are the external quality factor at the input and at 

the output, respectively. 

The coupling coefficients are given by 

X. is the reactance slope parameters of the jth resonator. 
3 

The insertion losses at the center frequency are given by 

where n is the number 

the ith resonator. 

of elements, and Q is the unloaded Q factor of 
ui 
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9 . 2  Waveeuide Below Cutoff Band- ass DR Filter 

Waveguides or cavity resonators possess the highest unloaded Q's 

and, hence, will result in filters with minimum insertion loss for a 

given fractional bandwidth. However, their disadvantages are being 

relatively bulky and being useful over only a limited frequency range 

because of the possibility of higher-order modes. 

The availability of dielectric resonators with small tan 6 and good 

temperature stability makes them suitable for microwave filters. The 

band-pass filters realized with DRs are typically about one-third 

shorter than conventional waveguide filters. 

The band-pass filter to be described first is composed of a rec- 

tangular waveguide below cutoff containing dielectric resonators. The 

structure is then connected at both ends to propagating rectangular 

waveguides as shown in Fig. 9 . 4 .  

PROPAGATING CUTOFF PROPAGATING 
WAVEGUI D E  WAVEGUIDE 

RESONATORS 

Fig. 9 . 4  Dielectric-resonator band-pass filter 

The input propagating waveguide excites the electromagnetic fields, 

which decay exponentially with the distance from the junction of the 

cutoff waveguide. These evanescent fields excite the nearest dielectric 

resonator in the cutoff waveguide, and the signal is then transmitted 

through the next dielectric resonator, etc., to the output propagating 

waveguide. 

When the propagating waveguides are excited on the TE mode and if 
1,o 

the center line of dielectric resonators is oriented along the x-axis 

(see Fig. 9 . 4 ) ,  the fundamental TEOl6 mode in the dielectric resonator 

is excited. The transverse orientation of.resonators is preferred 
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because they can be tuned with concentric screws so as to avoid spurious 

mode excitations. 

As an example, consider the band-pass filter with dielectric reso- 

nators designed to have the following specifications: 

4-pole Chebyshev response 

center frequency = 4 GHz 

bandwidth = 40 MHz 

ripple in the passband = 0.2 dB 

The dielectric resonators to be employed have a diameter D = 14 mm and a 

height H = 7 mm. (The aspect ratio of the resonator H/D is chosen in 

the 0.3 to 0.5 range to minimize the interference of spurious modes.) 

The unloaded Q factor QU is 3800 for the materials at hand. 

The side view of the band-pass filter with four dielectric reso- 

nators is shown in Fig. 9.5. The distances L1 and L4 are measured from 

Fig. 9.5 Sectional view of the four dielectric-resonator 
band-pass filter 

the center of the resonator to the waveguide junction and the distances 

S between the resonator centers are determined from the specifi- 
j ,j+l 
cations of the desired filter response. The waveguide below cutoff has 

the following dimensions: 

height b' = 13.1 mm 

width a' = 22.5 mm 

The propagating waveguide has the following dimensions: 

height b = 47.5 mm 

width a = 22.5 mm 
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From (9.8), (9.9), and (9.10) and using the element values for the 

0.2 dB ripple prototype, we obtain 
- 

Qe, in - Qe, out 
= 130.3 

k12 = k3& = 0.0077 

k23 = 0.00628 

Using the diagrams presented in Ch. 8, we evaluate the distances L. 

and Sij, respectively. The insertion losses are computed from (9.11). 

Figures 9.6 and 9.7 give the theoretical and experimental transmission 

and reflection characteristics of the band-pass filter. Dielectric 

resonators in the waveguide below cutoff can also be excited by a mag- 

netic loop located at the end of the coaxial line, such as shown in Fig. 

9.8 151.  

The analysis of such a band-pass filter is the same as that de- 

veloped in the previous sections. Only the couplings of the first and 

the last resonators are modified and are obtained now by using a mag- 

netic loop. Figure 9.9 presents the response of a four-pole Chebyschev 

band-pass filter using such a coupling arrangement. 

Fig. 9.6 Theoretical and experimental transmission characteristics 
of the band-pass filter (reference [26], 01984 IEEE) 
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Fig. 9.7 Theoretical and experimental reflection characteristics 
of the band-pass filter (reference [26], 01984 IEEE) 

3.95 3.99 4.03 4.07 GHz 
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BELOW CUTOFF - 

\ 

RESONATOR 

Fig. 9.8 Dielectric resonators in an evanescent waveguide excited by a 
magnetic loop: a) rectangular waveguide, b) circular waveguide 
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Fig. 9.9 Response of a four-pole filter using magnetic loop 
for the input and output couplings 
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9.3 Microstri~ Band-oass DR Filter 

The coupling between the end resonators is now achieved by using 

microstrip lines. The design of these filters has been reported in 

references [6-91. The filter synthesis is based on the well-known low- 

pass prototype elements and a low-pass to band-pass mapping. The design 

is, in this case, completely determined by (9.8), (9.9), (9.10), and 

(9.11). 

A microstrip filter using four dielectric resonators has been real- 

ized around 4 GHz. The coupling to the external circuit was performed 

by two 50 n microstrip lines, as shown in Fig. 9.10. The pass-band 

4 I 

I 
MICROSTRIP 

LINE 
Fig. 9.10 Microstrip dielectric-resonator band-pass filter 

response of the filter is shown in Fig. 9.11. The insertion loss is 

about 1 dB, the VSWR is 1.16. In this realization, the resonators are 

simply glued to the microstrip substrate. 

Using the same method of analysis, a suspended microstrip filter has 

been studied and realized. The experimental response of this three- 

dielectric-resonator filter, centered around 16 GHz, is presented in 

Fig. 9.12. 
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ATTENUATION 

Fig. 9.11 Pass-band response of the microstrip filter (reference [27]) 

AATTENUATION 
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Fig. 9.12 Experimental response of the three dielectric-resonator 
suspended microstrip filter 
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9.4 Waveeuide Band-Stor, DR Filter 

When a dielectric resonator is situated in a propagating waveguide, 

it absorbs power at its resonant frequency and thus offers band-stop 

properties [lo-121. A band-stop filter can be realized by coupling the 

dielectric resonator to a propagating waveguide. The resonators are 

located in their own metal enclosures, as shown in Fig. 9.13. The 

coupling to the main waveguide is achieved through apertures in the 

waveguide walls. 

PROPAGATING 
WAVEGUIDE 

Fig. 9.13 Dielectric-resonator band-stop filter (reference [ 2 6 ] ,  
01984 IEEE) 

The length and the width of the metal enclosure is preferably chosen 

to be the same as that of the waveguide below cutoff for the band-pass 

filter. The height b of the propagating waveguide must be small enough 

to ensure isolation between the dielectric resonators. This isolation 

is further assured through the separation of the apertures by nXg/4, so 

that no inter-resonator coupling takes place. 

When the TE mode is excited in the propagating waveguide, the 
120 

magnetic field of that mode penetrates into the cutoff waveguide. After 

decaying exponentially near the aperture, this field couples with the 

magnetic field of the fundamental TEOl6 mode in the dielectric resonator 

(see Fig. 9.14). 

The H coupling configuration is chosen because the orientation of 
X 

the dielectric resonator is symmetrical with respect to the electric 
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Fig. 9.14 Excitation of the dielectric resonator 

field. In this way, the next higher mode to be excited is the TE 
3,O 

mode. The height of the metal cavity can be varied by means of a 

movable shorting plunger placed at the other end, as shown in Fig. 9.15. 

Its distance from the dielectric resonator modifies the resonant 

frequency of the resonator and, hence, can be used for tuning purposes. 

Fig. 9.15 Band-stop filter with two dielectric resonators 

As an example, a band-stop filter, such as shown in Fig. 9.13, is to 

be designed to satisfy the following specifications: 

2-pole Butterworth response 

center frequency = 3.88 GHz 

bandwidth = 20 MHz 

The dielectric resonators are supported by teflon stands which are 

firmly housed in each rectangular cavity. The separation between cavi- 

ties is three-quarter guide wavelengths. Figure 9.15 shows the side 

view of the filter. The distance t is measured from the center of the 
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dielectric resonator to the side wall of the propagating waveguide, and 

d is the distance from the shorting plunger to the dielectric resonator. 

Figures 9.16 and 9.17 give the measured values of the external Q 

factor as a function of the distances d and t, respectively. Figures 

9.18 and 9.19 show the influence of the distances t and d on the reso- 

nant frequency of the resonator. 

RESONATOR: D= 14mm 
L=  7rnm 
€,= 36 

10' I 

0 5 lo rnm 

Fig. 9.16 External Q factor as a function of the distance t 
(valid for d > 5 mm) (reference [ 2 6 ] ,  01984 IEEE) 
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Fig. 9.17 External Q factor as a function of the distance d for 
different t (reference [ 2 6 ] ,  01984 IEEE) 
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Fig. 9.19 Resonant frequency as a function of t (reference [26], 
01984 IEEE) 
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The procedure used for the design of the band-stop filter is the 

same as that which has been presented for the design of the band-pass 

filter. The theoretical and the experimental responses of the two- 

resonator Butterworth band-stop filter are given in Fig. 9.20. 

INSERTION LOSS: 
0.3 dB 

BANDWIDTH: 
19.5 MHz 

- EXPER. 

- --- - THEORY 

Fig. 9.20 Theoretical and experimental 
(reference [26], Q1984 IEEE) 

response of the band-stop filter 



450 DIELECTRIC RESONATORS 

9.5 Microstrip Band-stop DR Filter 

A dielectric resonator coupled with a microstrip line is identical 

to a parallel resonant circuit placed in series with the line. It is a 

localized element for which we have established earlier the equivalent 

network shown in Fig. 9.21. Denoting the electrical length of the line 

Fig. 9.21 Equivalent network of a band-stop microstrip dielectric- 
resonator filter (reference [13], 01981 IEEE) 

by 8, the scattering parameters of the network become 

At resonance, Z is given by 

where ZO is the characteristic impedance of the line. 

Richards [14] has shown that the distributed circuits can be ob- 

tained from the lumped RLC circuits by using the following frequency 

transformation: 

'ITW n = tan - 
2wo 

Using this transformed frequency, Richards 

frequency p = jn, so that 

(9.14a) 

introduces a new complex 
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We use the symbols fo an 

'7rw p = j tan - 
2wo 

d f to denote the frequenc ies in the m 

451 

(9.14b) 

icrowave 

domain, and n is the frequency of the corresponding low-pass prototype. 
If s and p signify, respectively, the microwave and the low 

frequency domain, we obtain from (9.14b): 

p = tan + s 
Oo 

Using (9.15), a low-pass filter of frequency n will be transformed into 
a band-stop filter centered around wo in the manner illustrated in Fig. 

9.22. 

Fig. 9.22 Frequency transformation from low-pass to band-stop 

If we consider a quarter-wavelength line of characteristic impedance 

ZO, we can establish an equivalence table between the s and p planes 

(see Table 9.1). 

The unit element is a quarter-wavelength transmission line of 

characteristic impedance ZO. Its chain matrix is given by 

We first study the equivalent circuit of a microstrip coupled die- 

lectric resonator. We have shown in Ch. 8 that the equivalent circuit 
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Table 9.1 RICHARDS TRANSFORMATION EQUIVALENCES 

c 17 = 
SHORT CIRCUIT 

of a low-loss dielectric resonator coupled with a microstrip line is a 

resonant circuit placed in series with the line, such as shown in Fig. 

9.23(a). The equivalent impedance Zt expressed in the s plane is 

z = Ls 
t 

1 + LCs 2 

Fig. 9.23 Equivalent circuit of the dielectric resonator coupled to a 
microstrip line (reference (131, 01981 IEEE) 
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Near the resonant frequency w = wo + A u ,  so that (9.17) simplifies as 

follows: 

z (s) = 1 
t 2C(s - so) (9.18) 

Z is now expressed in the p plane by using (9.14) t 

Z,(P) = LpP 

?r 
with L = 4 L wo. The equivalence of the two circuits in the s and p 

P 
plane is indicated in Fig. 9.23(b). 

The three-element low-pass prototype filter is presented in Fig. 

9.24. Using the chain matrices of individual elements and the relation 

Fig. 9.24 Low-pass prototype filter with unit elements (reference [13], 
01981 IEEE) 

between scattering parameters Sij and chain parameters T we obtain 
ij ' 

The S21 coefficient gives the amplitude function t(p) of the filter as 

follows : 

Therefore, 
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From this expression we can find the external quality factor: 

In the paragraphs to follow, we present the design procedure of the 

band-stop Chebyshev filter with the following characteristics: 

number of poles = 3 

ripple = 0 , 2  dB 

bandwidth = 120 MHz 

center frequency = 6 GHz 

The transfer function of such a filter is 

where T (p) is the Chebyshev polynomial of first kind, order three. 3 
From ( 9 . 2 0 )  and ( 9 . 2 4 ) ,  we derive 

Using 

we obtain 

Z.(p) is a positive real function associated with the equivalent network 

presented in Fig. 9 .25 .  Using Richards' theorem we can derive the 

Fig. 9.25 Equivalent network of the band-stop filter 
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low-pass prototype of the filter which is shown in Fig. 9.26. 

Fig. 9.26 Low-pass prototype of the filter 

From the value of L we can determine the external quality factor Q 
P 

by using (9.23), which in turn determines the distance between the line 

and the resonator. The unit elements are represented by quarter- 

wavelength transmission line sections. 

The structure of the filter is represented in Fig. 9.27. The theo- 

retical and the experimental responses of this filter are both given in 

Fig. 9.28. The method of analysis presented in this section is quite 

general so that it can be extended to the case of a filter having N 

elements. 

MICROSTRIP UNIT ELEMENTS 

DIELECTRIC RESONATOR 

Fig. 9.27 Structure of the microstrip dielectric resonator filter 
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'EXPER. 

y T H E O R Y  

DIELECTRIC 
RESONATOR: 

er = 37.2 
D =10mm 

Fig. 9.28 Response of the band-pass filter (reference [13], 01981 IEEE) 
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9.6 Other Band-´ ass DR Filters 

An interesting feature occurs when a band-pass filter is cascaded at 

both ends by two band-stop filters. Their presence introduces two poles 

of finite attenuation located in the stop band of the band-pass filter 

response [5,15]. The filter response is shown in Fig. 9.29. The new 

filter has a higher cutoff attenuation rate (26 dB/10 MHz) compared to 

the original band-pass filter (14 dB/10 M H z ) .  However, we can note that 

with the introduction of the band-stop filters, the insertion loss in- 

creases. 

Fig. 9.29 Transmission response of the band-pass filter with a high 
attenuation cutoff rate (reference [26], 01984 I E E E )  

Uafng tho results obtained on waveguide and microstrip structures, 

we have realized a filter at 22 GHz for which the input is a waveguide 

and the output is a microstrip line (see Fig. 9.30). The response of 

this filter in presented in Fig. 9.31. 
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Fig. 9.30 Band-pass filter combining a waveguide and a microstrip line 

Fig 9.31 Transmission response of the filter centered around 22.5 GHz 
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9.7 Elliptic Band-pass DR Filters 

Consider a coupled-cavity system shown in Fig. 9.32 consisting of 

four resonant cavities. In a simple cascaded configuration, there are 

only three coupling coefficients: k12, k23, and k34, but if a new 

coupling k14 is introduced between the first and the fourth cavities 

which has opposite signs compared to these of k12, k23, and kj4, then it 

is possible to have a transmission zero at a finite frequency [16]. We 

can accomplish that coupling by using TEOl6 mode of a dielectric reso- 

nator in a metallic shield. We have demonstrated in Ch. 8 that such a 

Fig. 9.32 System of four coupled cavities 

coupling can be achieved by introducing a hole in the common wall of the 

metallic shield [17] (see Fig. 9.33). The negative coupling can be ob- 

tained by off setting the lower cavity axis with respect to the upper 

cavity axis. It is evident that an elliptical function filter can be 

realized with four circular cavities. 

r- COUPLING 

Z- COUPLING 

Fig. 9.33 Coupling between two cavities containing dielectric 
resonators 
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The synthesis of a filter is done on the basis of an equivalent 

circuit of four coupled cavities [18]. The equivalent circuit for each 

cavity will be a parallel circuit. 

The dielectric resonators are operating in the TEOl6 mode. There- 

fore, the coupling is essentially due to magnetic field. The coupling 

holes between the cavities can be modeled by inductive susceptances. 

The equivalent circuit of the whole network is shown in Fig. 9 . 3 4 .  The 

coefficients M characterize the coupling between the cavities. The 
i j 

filter elements are normalized to unity bandwidth. 

Fig. 9 . 3 4  Equivalent network of an elliptic filter 

Analyzing the equivalent circuit with the aid of the impedance 

matrix [16], one obtains the values M . 
ij ' 

The following symbols have been used above: 

w = pole frequency 
P 

w = zero frequency 

e = ripple constant 

Aw = bandwidth 
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Relations (9.29) to (9.32) permit one to determine the coupling coef- 

ficients as functions of poles and zeros. The normalized transfer 

function of an elliptic filter is presented in Fig. 9.35. 

Fig. 9.35 Normalized transfer function of the elliptic filter 

An elliptic band-pass filter will now be designed having the 

following specifications: 

Pass-band edges: fi = 5640 MHz , 
+ 
fD = 5680 MHz 

Stop-band edges: fi = 5590 MHz , 

+ 
fS = 5730 MHz 

Reflection coefficient: p = 20 % 

Maximum attenuation in the stop-band: a = 40 dB 

Using these parameters we can evaluate the denormalized pole frequen- 
+ 

ties, which are, respectively, fa = 5736.7 MHz and f = 5584.23 MHz. 

Afterwards, the coefficients M are computed. 
i j 

The appearance of the filter is sketched in Fig. 9.36. Two of the 

cavities are coupled laterally with M12 = Mg4 and the remaining two are 

coupled longitudinally (positive MZg and negative M14). Figure 9.37 

gives both the theoretical and experimental responses of the elliptic 

filter. The VSWR is about 1.2, whereas the insertion loss is quite high 

(- 1.2 dB). 
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Fig. 9.36 Structure of a TEols dielectric resonator mode elliptic 
filter 

5660 MHz 

Fig. 9.37 Transmission response of the elliptic filter (reference [17], 
Q1980 Hirzel Verlag) 
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9 . 8  Dual-Mode DR Filters 

Dual-mode operation is preferred in satellite applications. It al- 

lows the realization of high performance elliptic filters [19,20]. In a 

shielded cylindrical dielectric resonator, a number of degenerate modes 

with identical natural frequencies can be found. These degenerate modes 

can be mutually coupled by perturbing the rotational symmetry of the 

structure. 

For that purpose, we use the hybrid mode HEMll6, the field pattern 

of which is presented in Fig. 9 . 3 8 .  As discussed in Ch. 8, any pertur- 

bation of the cavity shape will destroy the independence of the modes 

and couple the energy between them. 

Fig. 9 . 3 8  Electrical field of the HEM116 mode of the shielded 
dielectric resonator 

A two-pole band-pass filter using only one resonator has been real- 

ized. The coupling screw has been inserted into the cavity wall with an 

angular location of 45' with respect to the input probe, causing the 
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energy within the resonator to split into a pair of orthogonal modes 

HENlls (see Fig. 9.39). 

COUPLING SCREW 

- 

PROBE 

I 

Fig. 9.39 Coupling of the dual HEM116 mode of the dielectric resonator 

With the use of element values for the Butterworth low-pass proto- 

type, (9.8), (9.9), and (9.10) provide the coupling coefficient between 

modes and between the input and output ports and the resonator. The 

comparison of these values with those obtained in Ch. 8 from the 

electromagnetic field analysis permit one to choose the diameter and 

depth combination for the coupling screw inserted in the shield. 

The measured performance of the dual Butterworth filter is shown in 

Fig. 9.40. The resonator used for this realization has diameter D = 10 

mm and height H = 30 mm. The insertion loss is about 1.5 dB, and the 

VSWR is about 1.3. 

The dual-mode DR filters have also been designed to exhibit an el- 

liptic behavior [20]. The coupling between modes within a single cavity 

is achieved via a mode coupling screw situated at 45' with respect to 

the antenna, as in the case of the dual-mode filter. The intercavity 

couplings are realized by means of cross slots, as can be seen in Fig. 

9.41. The arrangement is similar to that used in the metal-wall cavity 

filter. The dielectric resonators are mounted axially in the center of 

each evanescent circular cavity. 

A four-pole filter has been analyzed using the procedure described 

in Sec. 9.7. The results concerning the coupling coefficient of the 

mode HEMll6 can be found in Ch. 8. In Fig. 9.42, we give the 

experimental response of the filter. The characteristics of the 

dielectric resonators are: 
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diameter = 16 mm 

height = 8.5 mm 

permittivity fr = 36 

The insertion loss is about 0.8 dB, and the VSWR is 1.5. 

Fig. 9.40 Transmission response of a dual-mode filter (reference [19], 
01980 IEE) 
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Fig. 9.41 Four-pole elliptic filter using the HEM116 mode of the 
dielectric resonator 

Fig. 9.42 Transmission and reflecti~n responses of the elliptic HEM116 
dielectric resonator mode filter (reference [28], 01985 IEE) 
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9.9 Band-� ass DR Filter for Mobile Communications 

Dielectric resonator filters have already replaced the helical reso- 

nator filters traditionally used in mobile communications in the 800 MHz 

band. The cylindrical geometry has often been used to obtain the TEM 

mode in dielectric resonators [21,22]. However, we can also utilize 

dielectric resonators of rectangular cross section. 

Figure 9.43 gives the sketch of a rectangular dielectric resonator 

utilized for this purpose. Faces 1, 2, and 3 are metallized, whereas 

face 4 may or may not be metallized. If face 4 is metallized, the 

Fig. 9.43 Metallized rectangular dielectric resonator 

length of the resonator is Xg/2; and if not metallized, the length is 

Xg/4. As shown in Fig. 9.44, several metallized dielectric resonators 

excited by a magnetic loop are placed in cascade to realize this filter. 

LOOP RESONATOR 

Fig. 9.44 TEM dielectric mode filter structure (reference [29]) 
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In Fig. 9.45, we present the response of a filter centered around 

855 MHz. The filter uses dielectric resonators of a square cross 

section 10 x 10 mm and of the length Xg/4 .  

- 

- 

- RETURN LOSS 

830 850 870 MHz f 

Fig. 9.45 Transmission and reflection response of the TEM dielectric 
resonator mode filter 
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9.10 S~urious R ~ s D O ~ S ~ S  

The presence of higher resonant modes close to the resonant frequen- 

cy of the principal mode interferes with the filter's performance [24]. 

The spurious modes whose resonant frequencies are close to the TE 016 

mode resonant frequency are either HEM or TMOl6 modes. When hybrid 
mnP 

modes are used to realize a filter, other hybrid modes as well as TEOl6 

and TMO16 modes can interfere. Some resonant modes of the metallic en- 

closure (loaded with the dielectric resonator of high permittivity) can 

also be excited; these modes also perturb the response of the filter. 

Finally, we can also note that the presence of tuning screws, which are 

necessary to tune the resonant frequencies, can also excite spurious 

modes. 

In Fig. 9.46, we present an example of the spurious modes that we 

encounter in a microstrip band-pass filter using the TEOl6 mode. 

Fig. 9.46 Spurious modes in a TE016 dielectric resonator mode filter 

Likewise, Fig. 9.47 depicts the spurious responses found in an elliptic 

filter using the mode HEMll6. 

To eliminate the interferences, the aspect ratio of the dielectric 

resonators (diameter to height) should be properly chosen to place the 

resonance of spurious modes outside the operating frequency band. The 
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lrequency MHz 

Fig. 9.47 Spurious modes in a hybrid dielectric resonator mode filter 
(reference [28], 01985 Eur. Microwave Conf.) 

dimensions of the metallic enclosure must be fixed in such a way that 

the cutoff frequency of the fundamental mode of the cavity be much 

higher than the center frequency of the filter. We can also place the 

mode-suppressing elements on the surface of the dielectric resonators to 

prevent resonance of the spurious modes, but in this case the Q factor 

is degraded. Ren [25] proposed to insert a thin metal plate between the 

adjacent dielectric resonators such that its surface is parallel to the 

coupling magnetic field and perpendicular to the magnetic field of the 

spurious modes. 
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Chapter 10 
OSCILLATORS 
A.P.S. Khanna 

10.1 lntroductioq 

Microwave oscillators form an important part of all microwave 

systems such as those used in radar, communication links, navigation, 

and electronic warfare (EW). With the rapid advancement of technology 

there has been an increasing need for better performance of oscillators. 

The emphasis has been on low noise, small size, low cost, high efficien- 

cy, high temperature stability, and reliability. The transistor die- 

lectric resonator oscillator (TDRO) presents an interesting solution as 

a quality oscillator for fixed frequency or narrowband tunable oscil- 

lators. The present commercially available gallium arsenide field 

effect transistor (GaAs FET) can be used as the active device in oscil- 

lators for the entire microwave frequency range from 1 to 30 GHz. With 

the advent of temperature stable materials, the dielectric resonator has 

emerged as a high Q, low loss, and conveniently sized element for appli- 

cations in various microwave integrated circuits (MICs) for the entire 

microwave frequency range [I]. 

This chapter starts with the characterization of the dielectric 

resonator and the transistor. The oscillation conditions and the design 

of a TDRO using 3-port scattering matrix parameters (S-parameters) are 

then described. Temperature stability and the tunability of the TDRO 

are presented, followed by the measurement of TDRO characteristics. 
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10.2 S-parameter Characterization of a Microstrip-Couoled 
Dielectric Resonator 

The dielectric resonator is coupled to a microstrip line for appli- 

cations in different MIC's like filters, discriminators, oscillators, 

etc. The commonly used configuration is shown in Fig. 10.1. The die- 

lectric resonator placed near the microstrip line on the substrate is 

enclosed in a metallic shielding box. The shielding conditions, as de- 

scribed in earlier chapters, affect the frequency and Q factor of the 

Fig. 10.1 DR in a typical MIC configuration 

resonator. Figure 10.2 shows the equivalent circuit of the microstrip- 

coupled DR under given shielding conditions [2]. 

Fig. DR coupled to microstrip line and i 
(reference [3], 01983 IEEE) 

equivalent circuit 
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The coupling coefficient between the resonator and the transmission 

line is a function of the distance between the resonator and the line, 

and is given by 

where Sl10 and S210 are the reflection and transmission coefficients, 

respectively, in the resonator plane PP' at the resonant frequency. The 

normalized induced input impedance z can be given by 

where 

Knowing 

and 

the S-parameters of the DR coupled to a microstrip line in the resonator 

plane can be written as 

At resonance (6 = O), the scattering matrix (S-matrix) becomes 

The effect of the transmission line length (in the input and output 

planes, Fig. 10.2) on the S-parameter can be given as 
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It may be noted that a DR coupled to a microstrip line represents a 

band-stop filter configuration. The insertion loss, which is an in- 

creasing function of n, is given by 

Lo = 20 log (1 + n) (10.9) 

The coupling coefficient relates the different quality factors in the 

following way: 

where Q1, QL, and Q are the unloaded, loaded, and external quality 

factors of the DR coupled to the microstrip line under given shielding 

conditions. These quality factors as well as the coupling coefficient n 

can be determined from the network analyzer display of S 
11 Or S21. 

Figure 10.3 represents theoretical curves of SI1 and Spl for different 

values of the coupling coefficient n. While c can be calculated using 

(I), the loci for the determination of the various quality factors 

(shown as dashed curves in Fig. 10.3) can be drawn using the following 

approach [3]. The normalized input impedance zin from Fig. 10.2(b) can 

be written as 

The frequency deviations corresponding to different quality factors are 

given by 

Using (10.12) in (10.11), the Q, impedance locus is given by 

The corresponding relations in the Sll and SZ1 plane can be obtained 

using (10.4) and (10.5). The relations for QL and Q can be calculated 

using the same approach. Reference [3] provides the necessary formulas 
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Fig. 10.3 Quality factor determination from a) S11 and b) S2 
measurement (reference 131 ,  Q1983 IEEE) 

to draw the loci for QU, QL, and Qe on the Sll and Sgl planes, as shown 

in Fig. 10.3. These loci can be directly used to measure the desired 

quality factor. The loaded and unloaded Q factors can also be found 

using the magnitude of the transmission coefficient S21 around the reso- 

nant frequency, measured with a scalar network analyzer. Using the 

magnitude relations for S and S21L 131, and knowing that the in- 
2 1u 

sertion loss is 
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Lo(&) = 20 log S210 

it becomes possible to determine the quantity x (see Fig. 10.4(a)), 

needed for the measurement of QU and QL, in the following way [4]: 

S,, = I 

Frequency -+ 

Fig. 10.4 Qu determination from scalar measurement of Spl . 
[4], 01984 Microwaves & RF) 

(reference 
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Figure 10.4b illustrates the above relationship and shows that for a 

high value of Lo (> 17 dB) the QU and QL measuring points approach a 
3 dB separation from S210 and S21 = 1, respectively. The coupling 

coefficient n can also be determined from the measurement of L by 0 

A DR shown in Fig. 10.5 is coupled simultaneously to two microstrip 

lines. Such a configuration represents a band-pass filter [5]. This 

network will be used in realizing transistor DRO's of the parallel feed- 

back type, discussed later in this chapter. The equivalent circuit is 

presented in Fig. 10.6. The distances P1 and P2 (Fig. 10.5) are kept 

equal to one-quarter guided wavelength long in order to create an ef- 

fective short circuit at the plane A A ' ,  necessary for magnetic coupling 

of the resonator to the microstrip line in the TEOl6 mode. 

Fig. 10.5 DR coupled simultaneously to two microstrip lines (reference 
[7], Q1983 Artech House) 

Fig. 10.6 Equivalent circuit of a DR coupled to two microstrip lines 
(reference ( 7 1 ,  01983 Artech House) 
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The S-matrix of this configuration at the resonator plane can be 

represented by 

where nl and n2 represent the coupling coefficients of the DR with the 

input and output microstrip lines, respectively, and are given by 

The coupling coefficients also relate the unloaded and loaded quality 

factors by 
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10.3 3-Port S-~arameter Characterization of Transistors 

Transistor, a 3-port device, is generally characterized by its 2- 

port S-parameters with one of its ports grounded. The resulting three 

different configurations in the case of a GaAs FET are shown in Fig. 

10.7. Each configuration has its own advantages (e.g., the common 

source configuration is used more often for amplifiers, common gate for 

wideband oscillators, and common drain for medium power oscillators). 

Fig. 10.7 Three configurations of the transistor: (a) common source, 
(b) common gate, and (c) common drain 

The use of 3-port S-parameters, although introduced quite sometime 

back [ 6 ] ,  has not often been used due to the complexity of analysis in- 

volved. The availability of desktop computers and computer assisted de- 

sign (CAD) have now made their use practical. The use of 3-port S- 

parameters eliminates the otherwise necessary conversion to and from Z 

and Y parameters to analyze the series and parallel feedback effect as 

shown later in this chapter. The 3-port indefinite S-matrix of the 

transistor holds the property of having the sums of the rows and columns 

to be equal to 1 which helps in determining and eventually correcting 

the systematic errors in the measurement or analysis. The use of the 3- 

port S-parameters of the transistor sometimes become essential in the 

design of oscillators [5]. 

The transistor as a 3-port device is shown in Fig. 10.8 and the S- 

matrix of the incident and reflected waves is given by 
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Fig. 10.8 Transistor as a three-port device 

The ports 1, 2, and 3 represent gate, drain, and source, respectively. 

This indefinite 3-port S-matrix satisfies the following conditions: 

3 
X S = 1, for i = 1,2,3 
j=l ij 

3 
X S = 1, for j = 1,2,3 (10.22) 
i=1 ij 

The 3-port S-parameters of the transistor can be directly measured or 

obtained analytically from the commonly supplied 2-port S-parameters 

using the relations derived in Appendix 10.A. As an example, the 2-port 

S-parameters of NEC70000 at 10 GHz given by the manufacturer and the 3- 

port S-parameters calculated using these relations are given below: 
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10.4 Oscillation and Stabilitv Conditions 171  

Any oscillator can be represented in an arbitrary plane on the 

output line by a nonlinear impedance ZNL, having a negative real part, 

in series with a load impedance Z (Fig. 10.9). We assume that the L 
circuit has a sufficiently high Q factor to suppress the harmonic 

currents. 

+ f l & f , +  

I 
MOSFET + I 

ASSOCIATED 
I 
I 

ZL 
CIRCUIT 

Fig. 10.9 Nonlinear microwave oscillator (reference [ 7 ] ,  01983 
Artech House) 

Supposing that a current 

i(t) = I cos wt 

exists in the circuit shown in Fig. 10.9, we can apply the Kirchhoff 

voltage law and write in the plane PP': 

Since I is not equal to zero, (10.22) is satisfied by 

and 

Since Re(ZL) > 0, (10.25) implies that Re(Z ) < 0. Hence, the device 
NL 

needs to present a negative resistance in order to be able to oscillate 
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The frequency of oscillation is determined by (10.26), i.e., by the 

requirement that the load reactance be equal and opposite to the device 

reactance. 

Oscillators can also be represented by a nonlinear admittance Y L' 
The oscillation conditions in this case can be determined in the same 

way to be 

and 

At microwave frequencies, it is more convenient to express (10.25) to 

(10.28) in terms of the corresponding reflection coefficient rNL and rL 
as : 

Relation (10.29) implies that the device reflection coefficient r 
NL 

modulus should be greater than unity. 

An oscillator can be considered as a combination of an active multi- 

port and a passive multiport (the embedding circuit), as shown in Fig. 

10.10. With the active device and the embedding circuit characterized 

EMBEDDING 

Y\r 

Fig. 10.10 Generalized oscillator configuration (reference [ 7 ] ,  
01983 Artech House) 
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by their scattering matrix, we have, for the active device [ a ] :  

Ib> = S la> (10.31) - 

and for the embedding circuit: 

Ib'> = S' la'> (10.32) - 

When the active device and the embedding network are connected together, 

we have, for the oscillation conditions: 

Ibl> = la> 

and 

Ib> = la'> 

From (10.31) to (10.34), we can write: 

la'> = S S' la'> - - 

is a singular matrix, or 

where 1 is an identity matrix. Since - 

det M = 0 - 

lows that 

Equation (10.37) represents the generalized large-signal oscillation 

condition for an n-port oscillator. 

In fact, the scattering matrix of the active device being defined at 

small signal level, the n-port oscillation condition at small signal can 

be represented by 

and 

Arg det (S S' - 1) = 0 - -  - 

The oscillations can start as soon as the above relations are satisfied 
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and go on building up until the device nonlinearities cause a steady 

state to be reached. As an example, consider an active 2-port loaded by 

two passive impedances, as shown in Fig. 10.11. The active device is 

Fig. 10.11 Two-port loaded with two impedances (reference [a], 

described by the scattering matrix: 

and the embedding circuit by 

The osc illation condition from (10.37) is 

which gives 

3lrl - l S12r2 
det M = det - 

S21rl 
S r - 1  
22 2 

From the above, we obtain the following two well-known conditions, which 

are simultaneously satisfied for realizing oscillations [9]: 
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(10.44) 

The oscillations are considered stable if any perturbation in the RF 

voltage or the RF current of the oscillator circuit at any instant 

decays itself, bringing the oscillator back to its point of equilibrium. 

The oscillator stability is analyzed [lo] using a quasistatic approach 

by applying a small perturbation to the amplitude IO (Fig. 10.9). The 

impedance ZT defined in (10.24), which is a function of IO and the 

complex frequency p, is developed in a Taylor series about 10, juo. 

Since the perturbed current is non-zero, i.e., the oscillations continue 

to exist after the perturbation, we should have in the plane PP': 

and since ZT(Io, jw ) = 0, we get 0 

The increment 6p can be decomposed into its real and imaginary parts: 

The oscillator will be stable if, for a positive variation of the 

current amplitude, the real part of the variation of the complex 

frequency is negative, i.e., if a is negative, indicating a decreasing 

wave, returning to its point of equilibrium I 
0' 

From the above expression for 6p, this condition is realized for 
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This relation represents the stability condition of an oscillator around 

an amplitude IO and angular frequency jw0. Moreover, from (10.47), the 

imaginary part 60 vanishes if the condition: 

is satisfied. This indicates that a variation of amplitude 610 will not 

result into the variation of the oscillator's real angular frequency w 0' 
From (10.49) it can also be deduced that, for maximum stability, the 

device line ZT(Io) and load impedance ZL(w) should intersect at right 

angles at the oscillation equilibrium point 10, wo. 
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10.5 Stabilized Transistor DRO Design 

The origin of solid-state microwave oscillators using Gunn and 

impact avalanche transit time (IMPATT) diodes dates back to the late 

1960s, before which microwave sources used to be massive klystron or 

magnetron tubes requiring huge power supplies. In less than two 

decades, solid state oscillators have come a long way. The extension of 

bipolar transistor oscillators to microwave frequencies and the develop- 

ment of GaAs MESFET devices in the early 1970s has made available to us 

today, highly cost effective, miniature, reliable, and low noise sources 

for use right up to the millimeter wave frequency range. 

Dielectric resonators due to their high Q, small size, and excellent 

integrability in microwave integrated circuits (MICs), can be directly 

used as a frequency-determining element for realizing a stable MIC tran- 

sistor oscillator. With the recent advent of temperature stable materi- 

al for dielectric resonators, TDRO is fast becoming an automatic choice 

for a vast number of applications. 

The transistor oscillators can be realized using either bipolar or 

GaAs FET devices. Bipolar oscillators have a maximum oscillation 

frequency lower than that of GaAs FET oscillators, while the latter are 

noisier than the former. GaAs FET oscillators have been reported up to 

60 GHz, while oscillators using bipolar transistors have not been re- 

ported beyond X-band. Typically, a bipolar oscillator has 6 to 10 dB 

less frequency modulation (FM) noise close to the carrier as compared to 

the GaAs FET oscillator. The oscillator design approach presented in 

this chapter is applicable to oscillators using either type of tran- 

sistor, although the examples shown are only of GaAs FETs. 

A dielectric resonator can be used in two different ways to realize 

a stable MIC source: 

i) As a passive stabilization element coupled appropriately 

to a free-running transistor oscillator. The oscillator 

thus obtained can be called a "dielectrically stabilized 

oscillator" [ll]. 

ii) As a circuit element (e.g., in the feedback or matching 

network) in the transistor oscillator circuit to determine 

the oscillation frequency. The oscillator thus obtained 

can be called "stable transistor dielectric resonator 

oscillator' [12-151 . 
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The passive stabilization is possible only for those free-running 

oscillators whose oscillation frequency is sensitive to the variation in 

the load impedance, in other words, the oscillators with a poor pulling 

figure. The dielectric resonator is placed in a particular plane with 

respect to the oscillator plane such that the effective Q factor of the 

oscillator is increased in such a way as to increase the frequency 

stability at the cost of higher output power. Once the oscillator is 

locked onto the resonator frequency, any frequency perturbation will 

entail a change in the load impedance, which will readjust the 

oscillation frequency due to the pulling effect. 

The dielectric resonator is generally used in the reaction mode to 

realize a stabilized TDRO, as shown in Fig. 10.12(a). The dielectric 

resonator coupled to the microstrip line is placed at one-quarter or 

one-half wavelength from the free running oscillator output plane, 

depending on the output circuit requirements for the active device, 

i.e., needing a dX/& positive or dB/& positive, respectively. The 

analysis of the two cases being similar, we will consider the case for 

0 = x (half-wavelength). 

Using (10.2), the normalized input admittance of the stabilization 

circuit in Fig. 10.2 can be written as 

where A = 2 QU6. The admittance may be divided into its real and 

imaginary parts: 

The value of the last is plotted in Fig. 10.12(b). The stabilized 

frequency range 6 over which dB/df is positive can be calculated by 

differentiating and equating (10.52) to zero as: 
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Fig. 10.12 Passive DR stabilization of a transistor oscillator: 
(a) configuration and (b) stabilization range 
(reference [ 7 ] ,  a1983 Artech House) 

This gives us: 

The stabilization bandwidth 6 = 26£. in terms of reflection coefficient S 
SllO, can be given by 
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This stabilization method reduces the useful RF output power in two 

ways. First, the free-running oscillator power is a function of the 

load admittance YL and is generally maximum for Re(Y ) = 1. From L 
(10.51), at the resonance frequency, the load admittance presented by 

the stabilization circuit (Fig. 10.2) is given by 

This results in the decrease of power output given by 

Second, a part of the oscillator output is also lost as the in- 

sertion loss (S ) of the dielectric resonator coupled to the microstrip 2 1 
line as discussed in Sec. 10.2. This loss L2 is given by 

The total insertion loss of this stabilization system is the sum of the 

above two losses. It may be noted that in Fig. 10.12(a), the load 

resistance ZO plays the role of a damping resistor as well, because at 

frequencies away from the resonance, the DR becomes transparent to the 

oscillator output signal which looks directly into the characteristic 

impedance Z 0' 
The stabilized TDRO presented above, however, has certain limi- 

tations. The presence of two resonant circuits, the free-running oscil- 

lator tuned circuit, and the DR creates the problem of mode jumping and 

frequency hysteresis over the pulling range (stabilization bandwidth) 

[16]. The insertion loss introduced by this stabilization system, being 

a function of the performance desired, can also sometimes be excessive. 
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10.6 Stable Transistor DRO Desien 

A stable TDRO uses the dielectric resonator directly as an oscil- 

lator circuit element like the frequency determining circuit, feedback 

circuit, or matching circuit element. This approach, in addition to 

eliminating the undesirable features of mode jumping and hysteresis, 

reduces the size as well as the cost. A stable TDRO also has a high 

efficiency circuit, of more simple construction, making it an obvious 

choice over the stabilized TDRO. 

In general, an oscillator circuit can be represented as either a 

series or a parallel circuit as shown in Fig. 10.13. The DR can be used 

to realize one or more of the immittances shown in this figure. The 

commonly used stable TDRO's can be divided into two types: one using 

the DR as a series feedback element, and the other using the DR as a 

parallel feedback element. We will now discuss the analysis and design 

of both types. 

Fig. 10.13 General transistor oscillator configuration: (a) Series type 
and (b) Parallel type (reference [7], 01983 Artech House) 

Figure 10.14 presents the different configurations using the die- 

lectric resonator as a series feedback element. Figures 10.14 (a) to 

(c) use the resonator at one terminal pair while the configuration (d) 

uses the DR as series feedback element at two terminal pairs of the 

transistors. As an example, we will now discuss the step by step 
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procedure for the realization of the configuration shown in Fig. 

10.14(a) using the 3-port S-parameters of NEC70000 described in Sec. 

10.3. Comments on the design of other configurations are made where 

necessary. 

OUTPUT 
MATCH 

OUTPUT 
MATCH 
n 

OUTPUT 
MATCH 

Fig. 10.14 Different configurations for series feedback transistor 
DRO's (reference [ 7 ] ,  01983, Artech House) 

As a first step in the design procedure, we have to determine the 

impedance Z3 in Fig. 10.15. With the impedance Z3 connected to the 

source terminal, the reflection coefficient r3 becomes 

z - z  r =u 
3 z3 + zo 

Substituting into (10.20), we obtain 
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9 
Fig. 10.15 Determination of 23 (reference [7], 01983 Artech House) 

Eliminating b3 from (10.61) to (10.63), the reduced 2-port S-matrix is 

given by 

The aim is to determine the value of series feedback impedance Z3 which 
T T will result in the modulus of Sll and Sg2 being greater than unity and, 

hence, create the desired instability in the transistor. For the 

example considered in Fig. 10.14(a), the open-circuited microstrip line 

represents a purely reactive impedance. The Ir I = 1 plane determines a 3 
circle when mapped in the input and output reflection coefficient planes 

using well-known techniques [17]. The generalized mapping equations 

are given in Appendix 10. B. Figure 10.16 shows the Ir3 1 = 1 plane 

mapped into the sTll and ST planes for the transistor NEC70000 at 
2 2 

10 GHz. The shaded area represents inductive impedance and the unshaded 

area represents the capacitive impedance in the source. 

From Fig. 10.17 it may be noted that a negative reactance greater 

than -j 30 ohms can be used to make both ST1 and ST2 greater than one. A 

value of -j159 ohms is selected, which can be realized by an open 
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T T 
Fig. 10.16 Mapping of  lrsl = 1 in  (a) Sll and (b) S22 
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circuited stub .048Xg 
S-matrix is now given 

long or by a 0.1 pF capacitor. The reduced 2-port 
by 

A dielectric resonator coupled to a microstrip line can also be used as 

impedance Z3 in Fig. 10.15 as shown in Fig. 10.14(d). The reflection 

coefficient in this case is a function of the coupling coefficient nj  

and the distance B 3  between the transistor plane and the resonator 

plane, as analyzed in Sec. 10.2. Using the matrix coefficients from 

(10.64), r3 plane in terms of n3 and B 3  can be mapped into any S- 
parameter of the reduced 2-port. Figure 10.17 shows, for example, 

mapping of the DR reflection coefficient plane into all the four S- 

parameters of an X-band FET at 8 GHz [12]. 

The non-concentric circles shown Fig. 10.17 are the constant cou- 

pling coefficient n3 (proportional to IT3 1 ) circles, while the radial 
arcs are the constant transmission electrical line length B 3  (pro- 

portional to arg r ) arcs. The relation between r3, n3, B and frequen- 3 3 
cy is given by 

with A as defined in (10.50). Figure 10.17 can be used to determine the 

DR position in order to create the desired instability in the tran- 

sistor. 

Continuing the TDRO design example (Fig. 10.14(a)), we have already 

determined the impedance Z3; the resulting 2-port S-parameters are given 

in (10.65). In the second step of the procedure, we will determine the 

value of reflection coefficient r which maximizes the reflection coef- 1 
ficient r at the drain port Fig. 10.18, using the following relation: d 

The reflection coefficient rl in this case is realized by a DR coupled 
to microstrip line and is characterized by the coupling coefficient nl 

and the distance B between the transistor and the resonator plane. 1 
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0 

D . R .  

Fig. 10.17 DR as a series feedback element in source (reference [12], 
01982 IEEE) 
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Fig. 10.18 Determination of DR position in the gate 

T T In the present example, (sIlI and being greater than unity, 

the mapping technique used in the first step cannot be used to determine 

the required rl and, hence, the position of DR. Instead, we will use 

the constant reflection coefficient circles approach, in which case the 

locus of constant reflection coefficient magnitude lrdl is drawn on the 
reflection coefficient plane rl. From (10.67), the radius R and center 

il of the constant reflection coefficient circles can be determined to be 

where 

Figure 10.19 shows various lrdl = constant circles on the r (n 1 1 1 ~ 1 )  
plane for the example under consideration. The value of nl and B1 can 

now be determined for a high value of lrdl (> 1). 

The first step and the second step used the small-signal S- 

parameters to determine the impedances Z,, and Z1 to be connected at gate 

and source ports, respectively, in order to achieve a high value of 

reflection coefficient at the drain port. A number of approaches exist 
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T Fig. 10.19 Constant  IS^^^^ circles in the DR reflection 
coefficient (nl,81) plane 

to determine the load circuit impedance Z2 as shown in Fig. 10.13(a). 

The two common ones, which assume large-signal operation, are the 

device-line approach and the load-pull approach. 

The device-line approach I171 is based on the measurement of the in- 

verse reflection coefficient of the one-port and the added return power 

for different input power levels. The load impedance for maximum oscil- 

lator output power can be determined from the device line thus obtained. 

This approach, however, has the limitation that it requires the source 

resistance to be greater than the modulus of the device resistance. 

Otherwise, oscillation takes place and the device line cannot be 

measured. 

The test set-up for the measurement of load-pull effects [18] is 

shown in Fig. 10.20. The oscillator acts as the RE power source for the 

system. The drain port of the transistor circuit (with optimized Z1 and 

Z connected) is attached to the load-pull measurement system at the in- 3 
put port of the reflectometer through 50 ohm line and powered up. The 

impedance shown on the polar display will be the impedance presented to 

the output of the oscillator device. Using the output tuner, contours 

of constant output power can then be drawn on a Smith chart using the 

power readings from the output power meter and an x-y recorder connected 

to the polar display. A typical load-pull data is shown in Fig. 10.21. 
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OUTPUT 
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, TERMINATION 

Fig. 10.20 Load-pull set-up for one-port oscillator (reference [18], 
01980 Microwaves & RF) 

Fig. 10.21 Typical load-pull data (reference [la], 01980 
Microwaves & RF) 

This load impedance chart can be used to design the output circuit for 

the transistor. 

An alternative way of realizing a stable oscillator is using the DR 

simultaneously coupled to two microstrip lines as a parallel feedback 

element for a transistor. In this case, the transistor can be used as a 

two-port or a three-port device as shown in Figs. 10.22 (a) and (b), 

respectively. 
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In Fig. 10.22(a), the transistor is treated as a 2-port [19]. In 

this case, the input and output matching circuits for a common source 

transistor are designed for maximum transducer gain amplifier around the 

oscillator frequency fo. Highly selective positive feedback between the 

input and the output can be used to create stable oscillations. This is 

achieved by feeding back a part of the output signal into the input 

through the dielectric resonator transmission filter. The lengths P1 

Fig. 10.22 Parallel feedback transistor DRO using transistor as (a) 
two-port and (b) three-port (reference [ 7 ] ,  81983 Artech 
House) 

and P 2  are adjusted to achieve the phase shift around the loop, con- 

sisting of the amplifier and feedback circuit, equal to an integer 

multiple of 2% radians at fo, i.e., 

where 4 A ,  dR, and 6 are respective insertion phases of the amplifier, C 
resonator, and the remaining part of the feedback circuit at fo. The 

other condition for the oscillations to take place is that the open-loop 

small signal gain must exceed unity at fo, i.e., 

where GA, $, and L are the amplifier gain, resonator filter loss, and 
C 

loss in the other feedback components in dB, respectively. The neces- 

sary relations for determining the resonator insertion phase dR and 

insertion loss $ can be determined from (10.16): 
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(10.72) 

The extent of the inequality given in (10.71) and, hence, the amplifier 

gain compression in the steady state oscillation condition affects the 

output power as well as the FM noise performance of the oscillator. 

Excessive gain compression can adversely affect the oscillator noise due 

to increased amplifier noise figure and amplitude modulation to phase 

modulation (AM-to-PM) conversion. 

In Fig. 10.22(b) the transistor is treated as a 3-port [15,5]. In 

this case, the DR transmission filter is coupled between the two termi- 

nals of the transistor and the output is taken from the third. This 

configuration can be analyzed as a two-port containing DR as a parallel 

feedback network to a three-port device, the transistor (Fig. 10.23). 

The aim is to calculate the reflection coefficient at the output port as 

a function of the S-parameters of the device and those of the feedback 

network. Referring to Fig. 10.23, when ports 1 and 2 of the 2-port are 

connected to ports 1 and 2 of the 3-port, we have 

alA = blB , a2A = bqB , alB = blA , and a 2 ~  = b 2 ~  (10.74) 

Using the above equalities, the input reflection coefficient at port 3 

can be determined as follows: 

(10.75) 

where 
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2 PORT 

3 PORT 

Fig. 10.23 Two-port as a parallel feedback element to a three-port 
(reference [ S ] ,  @I984 IEEE) 

The S-parameters of the 2-port B containing the DR in terms of the 

coupling coefficient n and the line length 8, were determined in Sec. 

10.2. Using the relations (10.15) and (10.75), the reflection coef- 

ficient at the drain can be plotted as a function of the feedback 

parameters n and 8 of the network B connected between source and gate. 

Figure 10.24 shows such a plot for a half-micron FET at 9 GHz, which can 

be used to determine the feedback parameters to maximize the reflection 

gain (> 1). The output matching circuit can now be determined using the 

load pull approach described above. 

The 3-port approach can, in fact, be used to determine the maximum 

reflection gain at any of the three terminals of the transistor as a 

function of parameters 8 and n of the feedback network between the other 

2-ports. The preferred output port which offers maximum reflection gain 
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can thus be determined. A damping resistance, shown in Fig. 10.22(b), 

is generally required at one of the FET ports in order to avoid spurious 

oscillations. This addition only affects the S-parameters of the 

feedback network (the 2-port DR transmission filter). 

Fig. 10.24 Drain reflection coefficient as a function of DR feedback 
between gate and series (reference [ 5 ] ,  Q1984 IEEE) 
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10.7 Tem~erature Stabilitv of DRO's 

Microwave sources with high temperature stabilities have been 

realized in the past using Invar cavities or by phase locking the source 

to a frequency-multiplied very high frequency (VHF) crystal oscillator 

operating in a temperature-stabilized environment ("ovenizedn). These 

approaches are cumbersome as well as expensive. With the advent of high 

performance dielectric resonators, TDRO's now present a miniature, ele- 

gant, and inexpensive way of achieving high temperature stabilities. 

A free-running transistor oscillator is known to have a negative 

temperature coefficient. The DR having a positive temperature coef- 

ficient is thus required to compensate for the frequency drift with 

temperature. At present, the temperature coefficient sf of the DR can 

be controlled by varying its composition. The DR's with r equal to f 
anywhere between +9 to -9 ppm/'C are commercially available. 

The temperature stability of a TDRO can be analytically determined 

in terms of the coupling coefficient n,  the Q factor, and the rate of 

change of transistor reflection phase with temperature. The detailed 

temperature stability analysis of the TDRO configuration given in Fig. 

10.14(a) has been treated in Ch. 7. Using this approach and a composite 

material DR, the temperature stabilities of 0.1 ppm/'C have been 

reported from -20 to +80°C [20]. 

A digital compensation technique for realizing high temperature 

stability TDRO has recently been reported [21]. In this case, a temper- 

ature sensor is mounted in the oscillator to detect the temperature 

changes. The data are digitized and fed to an electrically programmable 

read-only memory (EPROM), pre-programmed with temperature character- 

istics of the oscillator. The look-up table in the read-only memory 

(ROM) provides the necessary digital temperature correction word, which 

is converted to an analog signal (with proper synchronization between 

A/D and D/A) and applied to the DRO for frequency correction, as shown 

in the block diagram of Fig. 10.25. The correction signal can be ap- 

plied to the varactor in case of varactor-tuned DRO [21] or to control 

the phase shift in the feedback loop in case of parallel feedback DRO. 

Using this digital compensation technique, temperature stability better 

than? 0.2 ppm/"C has been achieved. 

Temperature stability of a DRO can also be enhanced significantly by 

inserting the oscillator package in a temperature-stabilized oven. 

Using a heater element, a quick-response thermistor and the associated 
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Fig. 10.25 Temperature stabilization of a TDRO using digital techniques 

control circuit, the package temperature can be maintained within 5°C. 

The oscillator package itself is isolated from the external environment 

by using an outer package. The two packages are thermally connected 

through stand-offs which are determined taking into account the dc 

dissipation in the oscillator and the desired temperature of the 

package. The package temperature is generally controlled at 5 to 1O0C 

above the maximum temperature for which the ovenized DRO is specified. 

A total frequency stability of better than 5 5 ppm can be obtained from 

- 40 to 70°C. This oscillator is suitable for use as a local oscillator 

in radio communication and test equipment, in place of certain phase- 

locked oscillators. 
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10.8 Tunine of Transistor DRO 

TDRO is basically a fixed frequency oscillator with its frequency 

determined by the resonator material permittivity, resonator dimensions, 

and the shielding conditions, as discussed in earlier chapters. The 

oscillation frequency can, however, be tuned over a narrow frequency 

range using different approaches depending on the requirements. The 

frequency tuning of the TDRO can be accomplished mechanically or 

electrically, as discussed below. 

Figure 10.26 shows the configuration used for mechanical frequency 

tuning of the TDRO. Use is made of the fact that the resonant frequency 

of the DR is highly sensitive to the shielding, i.e., to the proximity 

of the ground plane. A tuning screw is inserted from the top cover of 

SUBSTRATE 
-/ 

Fig. 10.26 Mechanical tuning of a dielectric resonator 

the package, right above the DR. The increase in the tuning screw depth 

d increases the resonant frequency of the DR in the commonly used TE 
016 

mode. Care should be taken to keep the distance h between the resonator 

and the tuning screw at least 0.5 times the resonator height so as not 

to degrade the DR quality factor. A mechanical frequency tuning range 

of f. 1% can be obtained in a TDRO without noticeably affecting the FM 

noise and output power (see also Sec. 4.9). 

The frequency of the TDRO can be electrically tuned by using a 

number of different approaches like varactor tuning, ferrite tuning, 

bias tuning, and optical tuning. Electrical tuning can be accomplished 

over a very small bandwidth without significantly affecting the oscil- 

lator performance. This tuning can be used for different applications 

like digital temperature compensation, low deviation frequency modulated 

sources, injection locking, etc. A brief description of the various 
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approaches for electrically tuning the TDRO follows below. 

In the varactor-tuned TDRO, a varactor in association with a micro- 

strip line is made to resonate around the DR frequency. This resonant 

circuit is electromagnetically coupled to the dielectric resonator, 

forming a pair of mutually coupled resonant circuits. By varying the 

varactor capacitance with the bias voltage, the resonant frequency of 

the DR, coupled to varactor-microstrip on one side and a 50 ohm micro- 

strip line on the other, can now be tuned. Figure 10.27 shows a typical 

configuration for coupling the varactor and DR. Tighter coupling be- 

tween the DR and varactor will result in greater frequency control at 

the cost of decreased DR Q factor and, hence, increased FM noise. 

Varactor .. 

Fig. 10.27 Varactor tuning of a dielectric resonator 

Figure 10.28 shows the effect of varactor tuning on a low-noise TDRO FM 

noise for the varactor coupling adjusted for 0.1 % frequency control at 

11 GHz [22]. Using another configuration with two varactors on a quartz 

spacer placed directly above the resonator, a tuning bandwidth of 0.75 % 

has been reported [23]. 

The DR can also be tuned by attaching a microwave ferrite on the 

resonator and applying a magnetic field to it. The magnetic field con- 

trols the magnetic properties of the ferrite and, hence, the field 

distributions in and around the DR resulting in a shift in the resonant 

frequency. Tuning bandwidths on the order of 0.5 % [24] and 1 % [23] 

have been reported. This method, however, cannot be used effectively in 

practice, due to serious limitations given below: 

It is a current-driven tuning method and has a slow tuning 

speed like that of YIG-tuned oscillators. 

The large size and bulk of the electromagnet necessary to 

provide the variable magnetic field. 
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Excessive power consumption of the driving circuit. 

Fig. 10.28 Effect of varactor tuning on DR oscillator FM noise 
(reference [ 2 2 ] ,  Q1983 Eur. Microwave Conf.) 

Another possibility for electronic tuning is to use the bias voltage 

for this purpose. The frequency of any oscillator is known to be sensi- 

tive to the bias voltage. This dependence is generally described by the 

pushing figure. Unfortunately, the change in bias voltage also affects 

the output power, thus, making it difficult to use for frequency rnodu- 

lation purposes. The bias circuit can, however, be designed in such a 

way as to minimize the output power variation with bias voltage. Using 

such a technique, Christ and Horowitz have reported 4.5 MHz frequency 

tuning range at 10 GHz with less than a 1 dB variation of oscillator 

power output [ 2 5 ] .  

A TDRO inherently has a high Q factor and, hence, a low pushing 

figure. This limits the bias-tuned frequency range, which can only be 

increased by intentionally reducing the oscillator Q at the cost of 

degradation of other oscillator characteristics like FM noise, 

temperature stability, etc. 
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Optical control of microwave devices and subsystems is a rapidly 

growing field of research. The resonant frequency of the DR used in the 

TDRO can be optically modulated and tuned as shown in Fig. 10.29. A 

UCt 

I 
FET 

Dielectric 
resonator 

Fig. 10.29 Optical tuning of the dielectric resonator (reference [30], 
01985 IEEE) 

photosensitive material like high resistivity silicon is placed directly 

on the dielectric resonator. Light from a laser or light emitting diode 

(LED) is brought through an optical fiber to illuminate the photosensi- 

tive material, changing its conductivity and perturbing the electro- 

magnetic field in and around the resonator. This perturbation results 

in a shift in the center frequency of the TDRO. Using this technique, 

tuning bandwidths of better than 0.1 % have been achieved at X-band 

[26,3O]. 
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10.9 T 9  

The measurement of oscillator characteristics such as power, 

frequency, harmonics, external Q factor, and FM noise are well known. 

These measurements, however, require a bench loaded with expensive 

laboratory equipment including power meters, frequency counters, 

spectrum analyzers, signal generators, circulators, variable attenu- 

ators, sliding shorts, etc. In this section we will discuss the 

measurement of major oscillator characteristics using a commonly availa- 

ble network analyzer and the signal generator (27,281. 

The principle of measurements is based on injection locking the TDRO 

under test with the signal available at the "unknown" port of the net- 

work analyzer. An injection locking polar diagram (ILPD) is thus ob- 

tained and displayed on the polar display. The network analyzer is used 

to measure the magnitude and phase of the injection gain under locked 

conditions. The resulting ILPD resembles ordinary impedance measure- 

ments and can be used to measure the important characteristics of the 

oscillator. Moreover, the ILPD can be used to optimize key oscillator 

operating parameters in a manner analogous to using the network analyzer 

in its conventional role involving filters and amplifiers. 

The Hewlett-Packard HP8410 network analyzer was used for the system 

described here. For low-power oscillators (up to about +10 dBm), the 

configuration shown in Fig. 10.30 was used. Figure 10.31 shows a higher 

power configuration that is useful up to about a 30 dBm output. To in- 

crease the gain measurement dynamic range and to protect the sensitive 

harmonic converter from inadvertent overload, attenuators of 30 dB and 

3 dB are inserted in the test channel and reference channel, respective- 

ly. With a range of RF power from -16 to -43 dBm at the reference 

channel input of the harmonic frequency converters, the use of a signal 

generator with a power output of from -10 to +17 dBm allows complete 

coverage of the range of possible power variations encountered. For ex- 

ample, using an oscillator having a +10 dBm output, one can measure an 

injection gain range of from 13 to 40 dB (Fig. 10.30). 

The equipment can be calibrated for either a transmission or a re- 

flection coefficient mode using a through-line and a short circuit. The 

phase calibration can be accomplished by injection-locking the circuit 

with very high injection gain (> 30 dB). In this case the phase differ- 

ence between the locked signal and locking source at the center frequen- 

cy can be assumed to be zero at the parallel resonant circuit oscillator 
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Fig. 10.30 Low-power oscillator measurement set-up (reference [28], 
01983 IEEE) 

converter 
shifter 

analyzer 

3 0  dB 2 0  dB 

I I 
I 

Occillotor under test 
g o n r a t a  Dual directional coupler (medium power) 

Fig. 10.31 Medium power oscillator measurement set-up (reference [28], 
01983 IEEE) 

plane. The reference plane extension control is adjusted to bring the 

polar injection locking diagram into the desired plane. The free- 

running oscillator frequency can be measured using a counter to locate 

the 0 (when Aw = 0) point on the injection-locking diagram. 0 
With the oscillator connected to the S-parameter test set's unknown 

port and the sweep generator set to sweep across about 10 % of the known 

oscillator frequency, noise can be observed on both the polar and 
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rectangular display. This noise is in addition to the desired signal 

peak on the rectangular display and the ILPD on the polar display. 

Next, the sweep band is gradually reduced, and the sweep generator 

power and the test channel gain are adjusted to obtain the desired ILPD 

on the polar display for various values of injection gain. The in- 

jection gain is thus directly measurable. 

Reducing the sweep bandwidth to a usable minimum helps eliminate the 

noise and improve the ILPD. Figure 10.32 shows the ILPD for different 

values of sweep generator power output and, hence, the injection gain. 

Figure 10.33 is an ILPD of a FET DRO, operating at 9.5 GHz. 

Fig. 10.32 Typical ILPD and definition of various parameters (reference 
[27], 01984 Microwaves & RF) 

For RF power measurements, the test channel gain is set to corre- 

spond to an injection gain of 20 dB. Using the signal generator output 

power level control, the G = 0 point on the ILPD is moved to the polar 

display's outer edge. The oscillator power can then be determined to 

the accuracy of the signal generator output controls without using a 
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power meter. For the low-power test configuration of Fig. 10.30, the 

oscillator output power is equal to the sweep generator output power. 

Fig. 10.33 ILPD of a DRO at 9.5 GHz (reference [ 2 7 ] ,  01984 
Microwaves & RF) 

Having established the injection gain, G, on the ILPD, the remaining 

parameters can be easily measured. Injection bandwidth, Ao, is given by 

 JAW^ 1 + I A ~  I and the external quality factor, Q can be determined 2 ex' 
from 

Significantly, the measurement is made without a spectrum analyzer, 

circulator, directional coupler, and power meter, which are usually 

required. Moreover, the display presented by the network analyzer is 

generally more informative than that obtained from a spectrum analyzer 

because it also gives the injection gain phase information, which is not 
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available from a spectrum analyzer. 

The nonlinear constants a and K [29] of the oscillator can be de- 

termined from the measured values of h0, to, and G using the following 

relations [ 2 8 ] :  

G sin B O  
a = 1 - G cos 8 

0 

and 

This approach provides a rapid means for determining a and K and graphi- 

cally depicting the effects of parameters such as biasing voltage on 

these nonlinear constants. For low values of injection gain, the el- 

liptical power variation in the injection-locked frequency range as well 

as in the locking range asymmetry (which is a function of a) can be read 

directly from the ILPD. 

The ILPD yields valuable insight into the oscillator output-matching 

circuit as well. Frequency and phase jumps within the locking range are 

readily displayed and recognized (Fig. 10.34). The network analyzer, 

thus, provides a valuable tool for testing and aligning the output load 

circuit. Since the injection gain represents oscillator power output 

(for constant oscillator signal input), the oscillator can easily be 

tuned for the desired power output. The method employed is comparable 

to using a network analyzer for tuning a filter or amplifier. This 

results from the comprehensive display that immediately shows the effect 

of changes to load or circuit impedances. 



DIELECTRIC RESONATORS 

Fig. 10.34 Phase jumping of TDRO (reference [ 2 7 ] ,  01984 
Microwaves & RF) 
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Appendix 10.A CONVERSION OF TWO-PORT S-PARAMETERS TO 
THREE-PORT S-PARAMETERS 

Equations (10.21a) and (10.21b) represent six equations in terms of 

nine 3-port S-parameters to be determined. Other equations necessary to 

determine all the nine S-parameters of the 3 port can be found as 

follows. 

From (10.20) we can write: 

If port 3 of the transistor shown in Fig. 10.15 is connected to ground, 

making it a common source configuration, we have 

Using (10.A4) in (10.A1 ) to (10.A3) and eliminating a3 and b3, we have 

where sT represents the reduced 2-port S-matrix of the transistor with - 
terminal pair 3 connected to ground. This relation represents four 

equations, which combined with six equations from (10.21a) and (10.21b), 

represent the necessary ten equations to be solved to determine all the 

nine 3-port S-parameters. The final relations thus obtained are as 

given in simplified form below [31]: 
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Appendix 10.B GENERALIZED MAPPING EQUATIONS 

Equation (10.64) can be written in a general from: 

where 

The mapping equation for (10.B1) can be written as 

where 

and 

Equations (10.B4) and (10.B6) can be used to map the r plane into S 
plane as shown in Fig. 10.B1. 
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Fig. 10.B1 Mapping of r plane into S plane 
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Chapter 11 
SOFTWARE 
Darko Kajfez 

11.1 c0andvCondltlons 
. . . . 

The diskette enclosed with the book contains several simple programs 

that are helpful for the design of dielectric resonator elements to be 

used in microwave circuits, such as filters or oscillators. The three 

programs in BASIC language, for which the source code is provided in 

ASCII format, are: 

DRESP . ASC Copyright (c) D. Kajfez, 1984 

DRESV2.ASC Copyright (c) D. Kajfez, 1986 

FOAM. ASC Copyright (c) D. Kajfez, 1988 

Program DRESP solves for the resonant frequency of the TEold mode, 

using the perturbational correction to the Itoh and Rudokas model (see 

Ch. 4). If requested, the program will plot the z-dependence of the E# 

and Hz field components, and print the table of energy distribution for 

the six basic regions of the dielectric resonator on a microstrip sub- 

strate. Program DRESVZ solves for the resonant frequency and the Q fac- 

tor of the TEOld mode, applying the variational correction to the Itoh 

and Rudokas mode, as described in Ch. 4 .  The accuracy of the resonant 

frequency obtained by these two programs is discussed on p. 160. 

Typically, one can expect an error of less than 1.5 %, and the accuracy 

improves when the lengths of external regions L1 and L2 become much 

smaller than the resonator length L (see Fig. 4.6, p. 133). 

Program FOAM was developed after the original publication of this 

book, so its theory of operation and instruction for use require a more 

detailed explanation, given in the next Section. 

The readers of this book who want to write their own programs are 

welcome to incorporate these three source codes into their programs, 
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either as they are, or with modifications to suit their needs. 

Authorization is given under the condition that an appropriate credit 

statement is communicated to the user of the program. For example, a 

suitable notice would be: 

"This program incorporates the computer code 

DRESV2 .ASC, Copyright (c) 1986 D. Kajfez. fl 

The listing of DRESP.ASC and DRESV.ASC can be found on p. 170 and p. 

177. The listing of FOAM-ASC is given below. 

10 REM ******************* file FOAM . . . . . . . . . . . . . . . . . . . . . . . . . . .  
20 REM Frequencies Of All Modes 
30 REM shielded dielectric resonator 
40 REM using eigenvalue data file 
50 REM first line of data file: ndat, er, qt 
60 REM ndat= number of data points 
70 REM er= relative epsilon 
80 REM other lines: kOa, x 
90 REM qt=l for TM and quasi TM modes 
100 REM qt=2 for TE and quasi TE modes 
110 REM copyright (c) 1988 Kajfez 
120 DIM EPS(2),L(2) 
130 PI=3 .I41593 : PRINT 
140 INPUT "dimensions (mm or mil) " ;D$ 
150 INPUT "resonator... a, L";A,H 
160 INPUT "side 1.. .relat. epsilon, Llt';EPS(l) ,L(1) 
170 INPUT "side 2. ..relat. epsilon, L2";EPS(2),L(2) 
180 IF D$="mmU GOT0 260 
190 A=.0254*A :H=.0254*H 
200 L(1)=.0254*L(l) :L(2)=.0254*L(2) 
210 PRINT 
220 IF D$="miln GOT0 260 
230 PRINT "either lower case mm or lower case mil" 
240 PRINT "nothing else is acceptable" 
250 GOT0 140 
260 INPUT "lmode in z direction (integer, usually 0) ";LMODE 
270 INPUT "name of data file (DISK:NAME.EXT) ";F$ 
280 OPEN F$ FOR INPUT AS #1 
290 INPUT #l,NDAT,ER,QT 
300 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
310 REM find the range where (xr-x) changes sign 
320 PRINT 
330 REM PRINT " BEGINNING THE ROUGH SEARCH" 
340 REM PRINT (When xr is imaginary, a negative value is printed) 
350 REM PRINT 
360 REM PRINT " kOa x xr 'I 
370 REM PRINT 
3 80 FOR IIN= 1 TO NDAT 
390 INPUT #l,SI,XI 
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400 GOSUB 1370 
410 REM PRINT USING " ###.#### ";SI,XI,XR, 
420 IF IIN>1 GOT0 470 
430 IF (XI-XR)>O GOT0 460 
440 PRINT "increase lmode" 
450 CLOSE :GOTO 1050 
460 S2=SI :X2=XI :GOTO 550 
470 S1=S2 : Xl=X2 
480 S2=SI : X2=X1 
490 IF XR < 0 GOT0 550 
500 DIF= XI-XR 
510 IF DIF > 0 GOT0 550 
520 FOLDSSI :FUNC=-DIF :DF=(Sl-52) /10 
530 CLOSE 
540 GOT0 590 
550 NEXT IIN 
560 CLOSE 
570 PRINT "no solution found'' 
580 GOT0 1070 
590 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
600 REM solve the transcendental equation 
610 REM PRINT 
620 REM PRINT "BEGINNING THE FINE SEARCH" 
630 REM PRINT 
640 REM PRINT " kOa (XK-X) " 

650 REM PRINT 
660 COUNT=O :NTRIAL=O 
670 FFNEW=FOLD+DF 
680 FUNCOLD=FUNC 
690 GOSUB 1080 
700 REM PRINT USING I t##.##### " ;FFNEW,FUNC 
710 SIGN=FUNC*FUNCOLD 
72 0 FOLD=FFNEW 
730 NTRIAL=NTRIAL+l 
740 IF SIGN < 0 GOT0 790 
750 IF NTRIAL > 50 GOT0 770 
760 GOT0 670 
770 PRINT "solution not found in 50 trials" 
780 GOT0 1050 
790 DF=-DF*.1 
800 COUNT=COUNT+l 
810 IF COUNT < 3 GOT0 670 
820 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
830 REM solution found, print the results 
840 KOA=(FUNC* (FFNEW+IO*DF) -FUNCOLD*FFNEW)/(FUNC-FUNCOLD) 
850 P=TH/PI 
860 FREQ=KOA*lSO/(PI*A) 
870 PRINT "frequency=", FREQ, " GHZ" 
880 INPUT "want to print the results (y or n) ";PR$ 
890 IF PR$<>"yV' AND PR$<>"Yt' GOT0 1050 
900 PRINT "enter any comment (don't use commas) then press return" 
910 INPUT CMNT$ 
920 LPRINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
930 LPRINT * I*********  FOAM " ;DATE$, TIME$, *u * * * ** * * * * 11 
940 LPRINT CMNT$ 
950 LPRINT "epsr=", ER, " dimensions=" ,D$ 
960 LPRINT na=lt,A, ' L=",H 
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970 LPRINT nepsrl=l*,EPS (1). " Ll=",L(l) 
980 LPRINT "epsr2=",EPS (2) ," L2=".L(2) 
990 IF QT = 2 THEN M$="qTEn 
1000 IF QT = 1 THEN M$="qTMt' 
1010 LPRINT "data file ' I ,  F$, "class=",M$ 
1020 LPRINT "lmode=", MODE, " p=", P 
103 0 LPRINT 'frequency (GHz) =I1, FREQ 
1040 LPRINT 
1050 INPUT "want to continue with the same resonator (y or n)";A$ 
1060 IF A$='yt' GOT0 260 ELSE IF A$="Yn GOT0 260 
1070 END 
1080 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1090 REM error function 
1100 REM eigenvalue is linearly interpolated 
1110 REM between two given points 
1120 IF FFNEW<S~ THEN PRINT "interpolation range exceeded" 
1130 IF FFNEW<Sl GOT0 1070 
1140 XL=Xl+(X2-XI) * (FFNEW-S1) / (S2-S1) 
1150 XL2=XL*XL :FF2=FFNEW*FFNEW 
1160 TH=O 
1170 RAD=FF2*ER-XL2 
1180 IF RAD<O THEN PRINT "interpolated eigenvalue not validM 
1190 IF RAD<O GOT0 1070 
1200 BA=SQR(RAD) 
1210 FOR I=1 TO 2 
1220 XR=XL2-FF2*EPS(I) 
1230 AL=SQR(XR) 
1240 ALI=AL*L(I) /A 
1250 EX=EXP (ALI) : EXI=~/EX 
1260 CTH=(EX+EXI) / (EX-EXI) 
1270 IF QT=2 THEN THI=ATN(AL*CTH/BA) 
1280 IF QT=I THEN THI=ATN(ER*AL/ (EPS (I) *CTH*BA) ) 
129 0 TH=TH+THI 
1300 NEXT I 
1310 TH=TH+MODE*PI 
1320 XRR=FF2*ER-(TH*A/H)A2 
1330 IF XRR < 0 GOT0 570 
1340 NEWX=SQR (XRR) 
1350 FUNC=NEWX-XL 
1360 RETURN 
1370 REM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1380 REM evaluation of xr 
1390 REM for si and xi from data file 
1400 XL2=XI*XI :FF2=SI*SI 
1410 TH=O 
1415 ARGUBA=FF2*ER-XL2 :IF ARGUBA<O THEN XR=-1 :RETURN 
1420 BA=SQR(ARGUBA) 
1430 FOR J=1 TO 2 
1440 XXRZXL2-FF2*EPS (J) 
1450 AL=SQR (XXR) 
1460 ALJ=AL*L (J) /A 
1470 EX=EXP (ALJ) :EXI=~/EX 
1480 CTH= (EX+EXI) / (EX-EXI) 
1490 IF QT=2 THEN THJ=ATN(AL*CTH/BA) 
1500 IF QT=I THEN THJ=ATN(ER*AL/ (EPS (J) *CTH*BA) 
1510 TH=TH+THJ 
1520 NEXT J 
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1530 TH=TH+LMODE*PI 
1540 XRR=FF2*ER-(TH*A/H)A2 
1550 IF XRR < 0 THEN XR=-SQR(-XRR) 
1560 IF XRR < 0 THEN RETURN 
1570 XR=SQR(XRR) 
1580 RETURN 
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11.2 proaram FOAM.ASC 

The name of the program is an abbreviation for "Frequencies Of All 

the Modes," and its theory of operation is described in Reference [I]. 

The program computes the approximate frequencies of the sixteen lowest 

modes that can be excited on a dielectric resonator mounted on a low- 

dielectric substrate. 

The method of computation is a generalization of the Itoh and 

Rudokas model. The resonator and its surroundings are divided into 6 

sections, as in Fig. 4 . 6 .  The field in sections 6  and 4  is assumed to 

be one of the propagating modes in a uniform dielectric rod waveguide. 

The dielectric resonator has radius a and length L, and is made of a 

dielectric material er (region 6) surrounded by air (region 4 ) .  For a 

given mode of propagation in the rod waveguide (such as HEMll or TEO1, 

etc.) the propagation constant f i  is related to the mode eigenvalue x as 
follows (recall eq. 3.42) : 

It is recalled from Ch. 4  that ko stands for the free-space propagation 

constant, and x stands for kpla. 

For a given mode of propagation and for a specific value of ern 

eigenvalues x are functions of koa that can be seen plotted in Figs. 3.4 

and 3.5. To compute these values, one needs to find a numerical solu- 

tion of the characteristic equation of each mode, typically containing 

the ordinary and the modified Bessel functions. To speed up subsequent 

computations, these numerical values are stored in a number of data 

files, also included with the diskette. All the data have been evaluat- 

ed for e, = 38. The names of the data files are assigned in the follow- 

ing manner: 

38TEOl.DAT (eigenvalues of the mode TEO1) 

38HEMll.DAT (eigenvalues of the mode HEM111 

etc. 

In regions 1 and 2 of Fig. 4.6, the field is assumed to have the 

same radial dependence as in region 6. However, as the dielectric con- 

stant in these two regions is much lower than in region 6, the fields 

are evanescent, decaying exponentially in z direction with an attenua- 
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tion constant a. From (4.104) and (4.105) the attenuation constants ai 

in regions i = 1 and 2 are evaluated by 

 or instance, if the resonator rests on a microstrip substrate es and 
the space above the resonator is filled with air, then = es and er2 

= 1. 

Regions 3 and 4 are ignored in the FOAM model, in the same way as in 

the Itoh and Rudokas model. Clearly, the entire computational procedure 

is a crude approximation to the actual physical situation, so one cannot 

expect numerical results to be highly accurate. 

The resonant frequency of the dielectric rod waveguide of length L, 

terminated on each side by evanescent waveguides of lengths L1 and La, 

can be computed from the "transverse resonance" condition [I]: 

For the TE and quasi-TE modes, the angles Bi are computed from 

ei = tan7'[? coth ai4 for i = 1.2 I 
For the TM and quasi-TM modes, the angles Oi are 

e a 
tanh aiLi for i = 1,2 J 

Using (1) and (3), one obtains the resonance condition, expressed as 

f allows 

At resonance, the value xr computed by (6) must be equal to the eigen- 

value x of the mode in question. Figure 11.1 shows two functions, x, 

and x ,  for the mode HEM12 and for an aspect ratio a/L= 1.14. The inter- 

section of the two curves gives the normalized frequency koa. 

The solution is obtained by iteration, in smaller and smaller steps 

of koa, until an accuracy of four decimal places is achieved. 

Naturally, the actual accuracy of the resonant frequency is considerably 
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Fig. 11.1 Functions x(koa) and xr(koa) 

lower, depending on the magnitudes of L1 and L2 in comparison with L. 

The shorter the outside regions, the more accurate the result computed 

by FOAM. The worst accuracy is achieved for open resonators, with an 

error as large as 8.6 percent [ll. On the other hand, when L1 a L and 

L2 a L, the error is smaller than 1 percent. 

When FOAM is executed, it prompts for the dimensions and for the 

mode of interest. For instance, suppose one wants to verify the reso- 

nant frequency of the mode H E M Z ~ ~  of an open resonator of radius a = 

5.25 mm and length L = 4.6 mm, with dielectric constant er = 38 (see 

Table 6.1, p. 285). The open resonators are modeled by substituting L1 

= L2 = 3L. For the present example, one simply enters L1 = L2 = 12 mm. 

The program prompts are therefore answered as follows: 

dimensions (mm or mil)? nun 

resonator... a,L? 5.25,4.6 
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side 1.. .relat. epsilon, Ll? 1,12 

side 2.. .relat. epsilon, L2? 1,12 

lmode in z direction (integer, usually O)? 0 

name of the data file (DISK:NAME.EXT)? 38hem21.dat 

Afterwards, the result appears printed on the screen: 

frequency= 7.457514 GHz 

The resonant frequency of this mode was measured to be 7.81 GHz (see 

Table 6.11, which differs by 4.5 percent from the value printed above. 

As mentioned earlier, the results for open resonators will be less accu- 

rate than for shielded resonators with close spacing between the res- 

onator and the parallel plates. 

The user may now print the result on the LPTl printer and add a com- 

ment, if desired. To continue with the same example, the prompts and 

the answers are: 

want to print the results (y or n)? y 

enter any comment (don't use commas) then press return 

? comparison with table 6.1 

want to continue with the same resonator ( y  or n) ? n 

The option to continue assumes the same dimensions as entered 

before, but allows reading another data file to compute the resonant 

frequency of another mode. Here, the prompt to continue was answered 

negatively. The printed output for this example is shown in Fig. 11.2. 

A reader scrutinizing the FOAM.ASC program may notice that several 

PRINT statements have been incapacitated by REM statements (e.9. lines 

330 to 370 and line 410). These lines were written to print the inter- 

mediate steps of a search for the intersection of functions x and xr in 

Fig. 1. Not so long ago, when personal computers were hundreds of times 

slower than today, their users needed an indication that the computer 

was still alive while crunching numbers. In the present computing envi- 

ronment, the list of all the intermediate steps would be printed in a 

fraction of a second, and the beginning of the list would be gone from 

the screen before the user could press the Break key. For this reason, 

the printing co~nands for the intermediate results have been blocked by 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
****+**t+ FOAM 08-22-1997 02:39:35 ****t*t** 

comparison with table 6.1 
epsr= 3 8 dimensions= mm 
a= 5.25 L= 4.6 
epsrl= 1 L1= 12 
epsr2= 1 L2= 12 
data file 38hem21.dat class= qTM 
lmode= 0 P= .9832683 
frequency (GHz) = 7.457514 

Fig. 11.2 FOAM printed output 

REM statements, but the line numbers of the original program were left 

unchanged. 

The modes in microwave hollow cavities are typically denoted by 

three subscripts. The first two subscripts characterize the propagating 

mode in a uniform hollow waveguide, usually of a rectangular or circular 

cross section. The third subscript characterizes a number of half-wave- 

lengths along the cavity axis. All three subscripts are integers. For 

instance, TEIOZ signifies that the waveguide with a propagating mode 

TEl0 has been truncated by two short-circuiting end plates, spaced one 

full wavelength apart. 

Similar notation can be applied to dielectric resonators. 

Propagating modes in the dielectric rod waveguide are also denoted by 

two subscripts, m and n. As explained in Chapter 3, the possible fami- 

lies of modes are: 

TEon, 'Won, and H%. 

When a dielectric rod waveguide is truncated by two parallel conductor 

plates, a resonant structure is obtained, e.g. Courtney holder shown in 

Figs. 3.15 and 3.16. Unfortunately, the very high Q factors cannot be 

fully realized when the conducting end plates are touching the dielec- 

tric resonator because of the significant surface currents on conduc- 

tors. The end plates must be somewhat distanced from the dielectric 

resonator, so that a shielded resonator like in Fig. 4.6 is created. 

Because of this, the length L of the dielectric resonator becomes some- 

what shorter than one-half wavelength. The non-integer number which 
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specifies the fraction of One-half wavelength is denoted by 6. From 

either ( 4 )  or (5), the value of d is computed as 

so that the resonance condition (3) is expressed as 

Therefore, the third subscript, number p, is no longer an integer, but a 

fraction plus an integer. 

In the FOAM program, the user can specify integer 1 under the name 

"lmode." For instance, the example printed in Fig. 11.2 specifies the 

mode HEM216, so that 1 = 0 and d = 0.983. For some modes, the solution 

with 1 = 0 cannot be found. In such cases, the following message is 

printed on the screen: 

increase lmode 

Usually, this means that 1 should be increased from 0 to 1. 
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11.3 

This program uses the same computational procedure described in the 

previous Section, but adds a convenient graphic interface. The program 

can be executed from any IBM-compatible DOS platform. 

To execute the program from the diskette, insert the diskette into 

drive A of a DOS computer, then enter a: and type the name of the pro- 

gram: 

f o m 4  

Alternately, you may copy the entire diskette into a directory on a hard 

disk, and then issue the above command. A display such as in Fig. 11.3 

appears. On this screen, you use the arrow keys to move the cursor in 

08-23-1997 FOAM4 Copyright (c) 1995 Kajfez 00:28:33 

- - -- 

I 
Press F1 for help, enter q to quit entering data 

Fig. 11.3 FOAM4 display for entering data 

the appropriate box, and enter the corresponding dimensions (in millime- 

ters) and values of relative dielectric constants. To check the program 

for the first time, accept the default values shown in Fig. 11.3 and 

press 

q 

to quit entering the data. The list of different modes appears on the 

left side of the screen, with the cursor located at the mode TEold. To 
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select any of the other modes, you may use the up and down arrow keys. 

If, for example, you choose the hybrid mode HEM226 and press the Enter 

key, you will get the result shown in Fig. 11.4. 

08-23-1997 FOAM4 Copyright (c) 1995 Kajfez 01:32:35 

TEOl 
TE02 

I 
"'1 0.001 

TE03 
Freq. GHz 

HEM23 I 
HEM3 1 0.001 erll= 1.000 
HEM32 
HEM41 

I 
What next: (i)nput, (p)rint, (s)ketch, or (elxit 

Fig. 11.4 The result of the FOAM4 computation 

The above example represents a Courtney resonator for which the two 

parallel conducting plates almost touch the dielectric resonator. Note 

that and L2 are not set exactly to zero, but rather to the very small 

value of 1 micron. If one tries to substitute the zero values, the pro- 

gram gets into numerical difficulties. The resulting frequency is not 

noticeably affected by such a small value of the air gap, except for the 

mode mold. Reference [I1 shows an example in which the airgap of 0.2 
mil (0.005 mm) causes the resonant frequency of this mode to change by 2 

percent. 

For a better understanding of various modes, program FOAM4 also 

plots the E-field and the H-field patterns. This enhancement to the 

original FOAM program was made possible by a recent quantum jump in per- 

sonal computer speed and memory. The computation of the electric and 

magnetic fields as a function of radius requires the evaluation of ordi- 
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nary and modified Bessel functions, as described in Chapter 3. To 

obtain a graphical representation of a particular mode, FOAM4 computes 

the transverse field components at a number of equidistant points, dis- 

tributed over the cross section of the resonator. The user may choose 

the point density to be one of the following: 

low density: 20 X 20 points, 

mediumdensity: 32 X 3 2  points, 

high density: 50 X 50 points. 

After computing the resonant frequency, the prompt in Fig. 11. 4 is: 

what next: (i)nput, (p)rint, (s)ketch, or or (elxit 

To make a sketch, press 

S 

and the next prompt is: 

Number of points: (h) igh, (m) edium, or (l)ow? 

Press 

- a  kql ,. -- - , / ,  , \ , - - - A ,  

o continue 

Fig. 11.5 E-field pattern of the HEM22d mode 
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for low. The progress of computation will be indicated by the appear- 

ance of a growing set of colored circles and the comment "WORKING." 

When finished, a screen such as in Fig. 11. 5 will appear. The display 

is in four colors, each color and the corresponding symbol signifying 

the relative intensity of the field. On the left-hand side of the 

illustration are the numerical values of the four different levels. 

~oughly, the levels are 1 dB, 6 dB, 20 dB, and 30 dB below the maximum 

field intensity. Pressing any key will then display the H-field distri- 

bution of the same mode, as shown in Fig. 11. 6. 

Fig. 11.6 H-field pattern of the HEM226 mode 

After pressing any key again, the prompt appears below the H-field pat- 

tern: 

What next: (p)rint the data, (clontinue, or (e)xit? 

To print, enter 

P 

The printer runs, but the page remains in the printer, and will need to 

be forwarded. Instead of walking to the printer and pressing the 
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"eject" or "form feedn button, you can enter the command to do that from 

the keyboard. The prompt appears: 

printer feed forward ( y  or n) 

and you enter 

Y 

TO finish the session enter 

e 

The printed output is shown in Fig. 11.7. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
09-07-1997 FOAM4 (c) 1995 Kajfez 00:03:39 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Dimensions (mm) : 
L1= 0.001 L2= 0.001 L= 7.900 a= 8.880 
Materials: 
epsl= 1.000 eps2= 1.000 eps= 38.000 
Mode : 
HEM22d+ 0 (d+ 0= +1.000) type of mode: qTE 
Frequency= 5.720 GHz 

Fig. 11.7 FOAM4 printed output 

Program FOAM4 becomes exact when the top and bottom spacings between 

the dielectric resonator and the parallel plates approach zero. Thus, 

the program can be used in conjunction with the Courtney method of mea- 

suring the dielectric constant (see p. 105) . 
The following example will describe a modification of the Courtney 

method which utilizes higher order modes [21. The resonator dimensions 

are a = 9.525 and L = 7.62 mm. The measured frequencies f,,,, of the 

modes TEoll to TE041 are listed in Table 11.1. As the exact value of 

the dielectric constant er is not known in advance, we perform the com- 

putations with er = 38.0, the value for which the data files for FOAM4 

have been evaluated. 

NO matter how tightly we press the conductor plates to the dielec- 

tric resonator, a small airgap will always exist between the solid mate- 

rial surfaces [31. Assuming the airgaps to be equal to 1 mil, as quoted 

in [21, the values entered as input data should be L1 = L2 = 0.025 mm. 
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The resonant frequencies fcmp computed by FOAM4 are also listed in 

Table 11.1. The table shows that the measured resonant frequencies are 

higher than the computed ones, which means that the measured value er is 

lower than the assumed value of 38.0. As the resonant frequency is 

inversely proportional to the square root of the dielectric constant, 

the measured value of er is computed as follows: 

The values of er obtained for each of the modes by using (9) are 

also listed in Table 11.1. The average value of the four measurements 

is 35.46, which is very close to the value 35.42, quoted in [21. 

Table 11.1 MEASUREMENT OF THE DIELECTRIC CONSTANT 

TE~ll 4.221 GHz 

TE~21 6.026 GHz 

TE031 8.241 GHz 

TE041 10.636 GHz 

4.075 GHz 

5.820 GHz 

7.964 GHZ 

10.281 GHz 

Mode f,,,,, Ref. [21 fcomp by FOAM4 er, eq. (9) 

35.41 

35.45 

35.49 

35.51 

The eigenvalues used by FOAM 4 are read from 1 :he same data files as 

the original program FOAM. As explained in the previous Section, those 

values have been computed for the relative dielectric constant er = 

38.0. If the user wants to use another value of er, the program secret- 

ly computes the resonant frequency f38 as if e, was equal to 38, and 

then scales the frequency inversely proportional with the square root of 

the dielectric constant, so that the user only sees the resulting scaled 

frequency: 
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11.4 

Program DRESV4 evaluates the resonant frequency and the unloaded Q 

factor of the TEola mode. The method of computation is the same as the 

one described in Chapter 4, but data entry is more user friendly. The 

program operates on IBM-compatible DOS computers. To execute the pro- 

gram from the diskette, insert the diskette in drive a:. Enter the 

program name: 

dresv4 

Alternately, you may copy the entire diskette into a directory on a hard 

disk, and then issue the above command. The display, such as shown in 

Fig. 11.8, appears. The cursor is located on the dimension L2 = 2.910 

(millimeters). If desired, a new value can be entered, but for now, we 

will use the default data. 

08-24-1997 DRESV4 Copyright (c) 1995 Kajfaz 14:52:16 

I 

I 
Press F1 for help, enter q to quit entering data 

Fig. 11.8 Initial display, ready to enter the data 

To quit entering data, enter 

Q 

and the prompt will ask you: 

what next, (i)nput, (c)ompute, (e)xit? 

To compute, enter 
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C 

After a second or so, the result shows nFreq. GHz 6.177." The next 

prompt is: 

Want to compute the Q factor ? (y or n) 

Enter 

Y 

and the prompt asks: 

Copper, aluminum, brass, or other? (c, a, b, or o) 

For aluminum, we enter 

a 

The next prompt is 

Resonator Qd (press Enter if not known) ? 

At this point, the user may enter the value of the dielectric Q fac- 

tor at the frequency of operation, such as specified in the manufactur- 

er's catalog. Note that Qd is typically inversely proportional to the 

frequency of operation. If the value is not known, the user can press 

the Enter key, and the program will use the default value Qd = 10,000. 

Afterwards, DRESV4 evaluates the conductor Q factor, Qc, by the incre- 

mental frequency rule (see p. 46). The overall unloaded Q factor, Qo, 

is then computed as follows: 

This formula is only approximate because it assumes that the elec- 

tric filling factor for the TEold mode is unity, whereas the actual 

value is somewhat smaller (p. 335 shows an example where the filling 

factor is 0.996). The resulting unloaded Q factor appears such as shown 

at the right-hand edge of Fig. 11.9. 

TO repeat the computation for a different set of dimensions or mate- 

rials, one can press 

i 

then use the arrow keys to move to the appropriate dimension and type 

the new value, followed by the Enter key. Please note that you may not 

edit data using the "Insertso or UDeletetl keys. If you make a mistake, 

press "Enter" and retype the value. 

Input and output data can also be printed on the LPTl printer: the 

result will have a format similar to the one shown in Fig. 11.7. 
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18-24-1997 DRESV4 Copyright (c) 1995 Kajfez 14:55:12 

'i Freq. GHz 
6.176 

L2i 2.910 &r21= 1.000 
conductor: 

-x I I aluminum 
a S/m: 

lmode= 0 Ja= 4.250 .372E+08 
*C------* skin depth pm: 1 1.050 

"i 3.700 ET(= 37.600 Qc= 
56074. 

-x I 

What next: (i)nput data, (p)rint, or (e)xit 

Fig. 11.9 Display with the results of computation. 

To end the session, enter 

e 
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Acceptable tuning range, Q drop, 164 
Accuracy, measurement of dielectric constant, 357 
Air gap, altering the resonant frequency, 108 
Antenna, resonant cylindrical dielectric cavity, 310 
Approximate solutions, of boundary-value problem, 189 
Attenuation constant, relation with phase constant, 46 
Axial mode matching method, 192 
Axial mode matching, 210-212 
Axisymmetric fields, see also circularly symmetric fields 
Axisymmetric modes, versus hybrid modes, 191 
Axisymmetric restriction, complex-valued propagation coefficients, 211 

BASICA command, 166 
Balanced dipole, 282 
Balanced loop, 282 
Band-pass DR filter, elliptic, 459-462 
increased cutoff attenuation rate, 457 
microstrip, 441-442 ' 

mobile communications, 467-468 
use in parallel feedback, 503 
waveguide below cutoff, 436-440 
waveguide to microstrip, 457-458 

Band-pass prototype filter, 433-435 
Band-stop DR filter, microstrip, 450-456 
propagating waveguide, 443-449 

Bandwidth, approximate, 13 
half-power, 12 

Basis functions, 272 
Bessel equation, 73 
Bessel functions, derivatives of, 123 
integrals of, 123 
modified, see Modified Bessel functions 
ratio of, approximation, 150 
table of derivative zeros, 125 
table of zeros, 124 

Bodies of revolution, 270 

CAD, definition, 481 
CTRL BREAK command, 167 
Catalog of modal field distributions, 298-317 
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Cavity perturbation, 138 
Cavity resonators, 26-42 
Cavity-type modes, shielded DR, 191 
Cheng, 67 
Christ and Horowitz, 511 
Circle mapping, constant reflection coefficient, 500 
series feedback realization, 496-501 

Circular cylindrical hollow cavity, 29 
Circularly symmetric modes, 120, 123 
see also axisymmetric modes 

Clarricoats and Taylor, 211 
Classification of modes, shielded DRs, 230-232 
in dielectric rod waveguides, 98-99 

Coefficient of expansion, definition, 345 
Cohn model, 126-132 
electric field distribution, 135 
energy distribution table, 139 
field distribution diagrams, 139-143 
first-order, 126 
of isolated DR, 132 
of shielded DR, 127 
perturbational correction, 133-138 
resonance condition, 131 
second order, 126 

Column matrices, symbol for, 7 
Column subvectors, in current coefficient vector, 288 
Column vectors, symbol for, 7 
Commercial materials for DRs, 371-375 
Common drain configuration, use for oscillators, 481 
Common gate configuration, use for oscillators, 481 
Common source configuration, use for amplifiers, 481 
Complex conjugate, symbol for, 7 
Complex dielectric constant, 43, 327 
Complex frequency, 275, 488 
Conductor Q factor, 13, 331, 337 
Conductor losses, 43 
Confined modes, 225 
Conjugate transpose, symbol for, 8 
Containment of field in the rod, 95 
Contour plot, H-field, 240 
Convergence, of computed resonant frequency and Q factor, 279 
Corner regions, improvement of the Itoh and Rudokas model, 158 
in the Itoh and Rudokas model, 144 

Correction terms, perturbational method, 224 
Coupled integral equations, 269 
Coupling coefficient, 15 
Q measurement, 55 
relation to different Q factors, 476 

Coupling coefficients, band-pass filter, 435 
Coupling of DR, TM016 mode to evanescent waveguide, 426-427 
TM016 mode to microstrip line, 424-425 
in waveguide below cutoff, 390-395 
methods of, 303, 306 
simultaneously to two microstrip lines, 479-480 
to dielectric image guide, 400-402 
to finline, 403-405 
to loop, 396-399 
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Coupling of DR, to microstrip line, 379-389 
to microstrip, S-parameter characterization, 474-480 

Coupling screws, dual mode resonator, 422 
Coupling, mutual, TM016 mode in evanescent waveguide, 428 
through an iris, 418-421 
two DRs in waveguide below cutoff, 406-414 
mutual, two DRs via microstrip line, 415-417 

Coupling, negative, two DRs via microstrip line, 418 
Courtney holder, 105, 333 
Courtney, 105, 339, 357 
Covered DR, temperature coefficients of, 351-354 
Critically coupled resonator, 19 
Crombach and Michelfeit, 208, 234, 236 
Crombach, 237 
Cylindrical hollow waveguide resonator, 26 

DR type modes, shielded DR, 191 
DR, definition, 113 
DRESP program, 139 
energy distribution table, 168 
instruction for use, 165-169 
listing, 170-173 
plotting the field distribution, 166 

DRESV2 program, computation of Q, 175 
instructions for use, 174-176 
listing, 177-181 
use of incremental frequency rule, 175 
analysis of tuning mechanism, 162 
computation of temperature coefficients, 353 

DRO, definition, 362 
Damping reshtance, 506 
Damping resistor, stabilized TDRO, 493 
Data lines, program DRESP, 165 
DeSmedt, 223, 228, 224 
DelaBalle, Guillon and Garault, 341 
Derivatives of Bessel functions, 123 
Device-line approach, large-signal operation, 501 
Dielectric Q factor, 14 
definition of, 331 
for Courtney holder, 335 
versus loss tangent, 328 

Dielectric cavity antenna, resonant cylindrical, 310 
Dielectric constant, complex, 43, 327 
measurement of, 105-109 

Dielectric losses, 43 
Dielectric rod waveguide, 65 
Differential method, mode matching, 212 
Digital compensation, temperature stability of TDRO, 507 
Dirac symbol, 7 
Dominant mode, cavity resonator, 26, 33 
Drain reflection coefficient, in parallel feedback, 505 
Dual modes, mutual coupling, 422-423 
Dual-mode filters, 463-466 

E like modes, 190 
E modes, 190 
E-field variational formula, 154-156 
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EH modes, 190 
in dielectric rod waveguide, 98 

EPROM, definition, 507 
EW, definition, 473 
Eigenfunctions R, 196 
Eieenfunctions Z. 196 " 
Eigenvalue diagrams, 82 
Eigenvalue equation, 74 
~essel versus trigonometric functions, 243 
dielectic rod waveguide, 79 

Eigenvalue of the TEOn mode, in the Itoh and Rudokas model, 144 
Eigenvalue problem, three dielectric layers, 245 
Eigenvalues, dielectric rod waveguide, 81-83 
Electric polarizability, 419 
Energy distribution table, program DRESP, 139, 168 
Environments of DR, 318-321 
Equatorial plane in DR, 299 
Equivalent circuit, DR coupled with microstrip line, 382 
Equivalent surface currents, electric and magnetic, 264 
Error analysis, Q measurement, 59 
Evanescent modes, propagation constant of, 120 
waveguides with magnetic walls, 120 

Exact solutions, parallel-plate resonator, 189 
Expansion coefficient, definition, 345 
table, 345 

Exterior modes, shielded DR, 191, 234 
External Q, 13, 15 
definition of, 331 
coupling of DR in evanescent waveguide, 393-394 
coupling of DR to microstrip, 382 

F10 command (function key), 168 
Factor W, ratio of energies in dielectric rod waveguide, 335 
Ferrite tuning, 302 
Fiedziusko, 296 
Field distribution diagrams, program DRESP, 139-143 
Field singularity, 241 
Field vectors, symbol for, 7 
Filling factor, electric energy, 332 
in temperature dependence, 349 

Finite difference method, 218-219 
procedure summarized, 192 

Finite element method, 215-218 
procedure summarized, 192 
variational, 216-217 
weighted residual formulation, 217 
with spacer and tuning screw, 217 

Fourier series expansion, of Green's function, 271 
of surface currents, 271 

Fractional bandwidth, band-pass filter, 433 
Frequency hysteresis, stabilized TDRO, 493 
Frequency measurement, on injection-locking diagram, 514 
Frequency tuning parameter, 12, 55, 475 
Fused quartz spacer, 368 

GRAPHICS command, 166 
Gain compression, in parallel feedback, 504 
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Galerkin method, 188 
Gegenbauer polynomials, 209 
Gelin, 276, 279 
Generating arc, for body of revolution, 270 
Gi1 and Gismero, 217 
Gil and Perez, 217 
Gol'berg and Penzyakov, 225 
Graphical method, of identifying the modes, 101 
Green' function technique, advantage of, 243 
Green's function methods, 227 
Guillon and Garrault, 296 
Guillon, 219 
H like modes, 190 
H modes, 190 
H field contour plot, 240 
H/I method, coupling of DR to microstrip, 383-384 
HE modes, in pillbox resonators, 190 
in dielectric rod waveguide, 98 

HEM field solutions, in isolated DR, 280 
HEM modes, 190 
dielectric rod waveguide, 75 
standardization of, 99 

HEM, definition, 280 
Hakki and Coleman, 105, 109, 339, 357 
Half-power bandwidth, 12 
Hankel functions, 79 
Harrington, 155 
Harrington, self-reaction, 155 
Helmholtz equation, cylindrical coordinates, 69 
hollow cavity, 29 
use in evaluation of volume integrals, 156-157 

Hewlatt-Packard, 513 
Higashi and Makino, 351, 354 
Homogeneous set of algebraic equations, truncation of, 203 
Hang and Jansen, 136, 211, 232 
Hybrid modes, versus axisymmetric modes, 191 
see also HEM modes 

ILPD, definition, 513 
IMPATT, definition, 490 
Identification of modes from surface currents, 292-293 
Imai and Yamamoto, 342 
Impedance inverters, band-pass filter,433-435 
Incremental frequency rule, 46 
application in Courtney holder, 336-337 
somispherical DR, 344 
uee in DRESV2 program, 175 
ure of differentials in, 47 

Incremental inductance rule, 46 
Incremental rules, 46-48 
Index of refraction, 220 
Induced input impedance, DR coupled to microstrip line, 475 
fnhomogeneous materials, in resonant cavities, 330-338 
Inhomogeneouuly filled cavity, 187 
Injection gain, TDRO measurement, 513 
Injection-locking measurement of TDRO, 513-518 
Input admittance, TMOlO cavity, 50 
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Input impedance, TMOlO cavity, 51 
Insertion loss, band-pass filter, 435 
of DR in parallel feedback, 503 

Insertion phase, of DR in parallel feedback, 503 
Instability in transistor, realization of series feedback TDRO, 496 
Integral equation methods, 227 
comparison with mode matching, 243 

Integral equations, coupled, 269 
formulation of, 268-269 
solution of, 270-274 

Integrals of Bessel functions, 123 
higher order, 61 

Interface of two dielectric media, 114 
Interior modes, shielded DR, 191, 234 
Ishihara, 354 
Isolated DR, measurements of, 282-285 
Isolated DR. mathematical model of, 263-267 
Q factor data, 231 
wave number data, first correction, 229 
wave number data, second correction, 229 
wave number data, zero-order, 228 

Itoh and Rudokas model, 144-147 
in computation of temperature coefficients, 351 
corner regions, 144, 158 
solution by DRESV2, 174 
surface integration terms, 159 
variational improvement, 154 

Itoh and Rudokas, 260 
Iveland, 148 

Jaworski and Pospieszalski, 227, 260 
Johnk, 67 

KEY ON command, 168 
Kajfez, 46, 287, 293, 230 
Kapustin, 227 
Klein and Mittra, 287 
Kobayashi and Katoh, 108, 340, 341, 344 
Kobayashi and Miura, 208 
Kobayashi, 208, 211, 212, 232 
Komatsu and Murakami, 209, 238 
Komatsu, 362 
Kooi, 217 
Krupka, 189 

LMODE input data, 168-169 
Large-signal operation, determining load impedance, 501 
Leaky resonant mode, definition, 198 
Linear transformer, resonator modeling, 51 
Load-pull approach, large-signal operation, 501 
Loaded Q factor, 13 
Long, 310 
Loop coupling to a DR, 396-399 
band-pass DR filter, 438 

Loop inside cavity, 49 
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Loss tangent, 14 
measurement of, 339-344 
versus dielectric Q factor, 328 

Lossy media, 265 
Low-pass prototype filter, 431-433 

MIC, definition, 490 
Magnetic conductor, 114-119 
Magnetic dipole, 225 
Magnetic field flux method, computation of coupling, 385-386 
Magnetic moment, orientation to accomplish coupling, 379 
Magnetic polarizability, 419 
Magnetic quadrupole, 225 
Magnetic walls, circular waveguides with, 120-125 
Magnetic-wall waveguides, 120-125 
Maj and Modelski, 149 
Maj and Pospieszalski, 209 
Materials for DR, commercially available, 371-375 
Matrices, symbol for, 7 
Maximizing reflection coefficient, at the drain, 498 
Maximum reflection gain, 3-port approach, 505 
Maystre, 209, 250 
Mechanical tuning of a DR, 161-164 
Medium wave number, 73 
Meridian plane in DR, 299 
Metallized DR, rectangular cross section, 467 
Method of moments, 187-188 
Methods of coupling to DR, 303, 306 
Misalignment, DR in dielectric waveguide, 401 
Mixed modes, shielded DR, 191, 234 
Mixed part, hybrid mode, dielectric rod waveguide, 97-98 
Mixed physical units, in current coefficient vector, 287 
Modal distributions of surface currents, computation of, 286-287 

interpretation of, 288-293 
Modal field distributions, computation of, 294-297 
interpretation of, 298-317 

Modal propagation constants, 211 
Mode chart, isolated DR, 284 

shielded spherical DR, 403 
Mode identification, chart, 108 
from surface currents, 292-293 

Mode indices, determining of, 288 
Mode jumping, stabilized TDRO, 493 
Mode matching method, axial, 192, 210-212 
comparison with integral equation, 243 
radial, 192, 194-209 
procedure summarized, 192 
axial, 210-212 

Mode notations, in dielectric rod waveguide, 98 
in isolated DR, 288 
in shielded DR, 190-191 

Mode subscripts, HEM notation, 281 
Mode suppression, 302, 305, 311 
Modes of the dielectric post resonator, convergence improvement, 188 
Modified Bessel functions, 74 
as radial eigenfunctions, 197 
integrals and derivatives of, 123 
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Modified Bessel functions, ratio of, approximation, 150 
Moment matrix, 272 
modified, for computation of field distribution, 295 

Murata Erie North America, Inc, 371-373 
Mutual coupling, TM016 mode in evanescent waveguide, 428 
dual modes, 422-423 
of two DRs through an iris, 418-421 
two DRs in waveguide below cutoff, 406-414 
two DRs via microstrip line, 415-417 

Near field distribution, expedient computation of, 296 
Negative coupling, elliptic filter, 459 
two DRs via microstrip line, 416 

Network analyzer, measurement of DR coupled to microstrip, 476 
use in TDRO measurement, 513 

Nonlinear admittance, 485 
Nonlinear impedance, 484 
Numerical instabilities, in higher-order modes study, 287 

Observation coordinates, 265 
Octupole, 314 
Omar and Schunemann, 227 
One terminal pair, DR in an oscillator ciruit, 494 
Oscillation conditions, 484-489 
generalized multiport, 486 

Oscillator FH noise, effect of varactor tuning, 511 
Oscillator stability, 488-489 
Output power, reducing by stabilization, 493 
Ovenized, definition, 507 

PEC walls, approximate field computation, 118-119 
definition, 118 

PMC walls, approximate field computation, 116-118 
definition, 117 

PRM, definition, 189 
PRTSC command, 167 
Parallel feedback, realization of TDRO, 502-506 
Parallel oscillator circuit, 494 
Parallel resonant circuit, unloaded Q factor, 17 
Parallel-plate DR, 65, 100-104 
Partial Q factors, 331 
Permittivity, see dielectric constant 
of free space, 68 

Perturbational methods, 220-226 
axisymmetric cases, 193 
importance, 243 
procedure summarized, 193 

Perturbational principle, cavity walls, 137-138 
Phantom surface, 263, 266 
for computation of field distribution, 295 

Pillbox DR. 190 
isolated, measurements of, 282-285 
see also isolated DR 
see also shielded DR 

Plots of field distribution, dielectric rod waveguide, 85-94 
hollow cavities, 34-42 
program DRESP, 139 
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Plourde, 358, 359 
Polarizabilities, magnetic and electric, 419 
Ppm, definition, 345 
Preferred output port, 3-port approach, 505 
Program DRESP, instructions for use, 165-169 
listing, 170-173 

Program DRESV2, instructions for use, 174-176 
listing, 177-181 

Propagating modes, propagation constant of, 120 
waveguides with magnetic walls, 120 

Propagation constant, of evanescent modes, 120 
of propagating modes, 120 
see also wave number 

Pulling figure, use in passive stabilization, 491 
Pulling range, 493 

Q factor, TEOll cylindrical cavity, 45 
computation by SIE method, 275-281 
conductor, 13 
definition of, 10 
dielectric, 14 
dielectric, definition of, 331 
dielectric, for Courtney holder, 335 
due to conductor losses, definition of, 331 
due to conductor losses, in Courtney holder, 337 
due to radiation, definition of, 331 
external, 13, 15 
external, definition of, 331 
loaded, 13 
radiation, 13 
unloaded, 13 
unloaded, definition of, 332 

Q measurement, 53-60 
error analysis, 59 
reaction method, 54, 476-478 
reflection method, 53-57 
time domain method, 60 
transmission method, 53, 59 

Quality factor, see Q factor 
Quasi-TE modes, dielectric rod waveguide, 98 
Quasi-TM modes, dielectric rod waveguide, 98 

ROM, definition, 507 
Radial mode matching method, 192, 194-209 
slow convergence, 241 

Radial wave number, 73,121 
waveguides with magnetic walls, 121 

Radiation Q factor, 13 
definition of, 331 
from complex frequency, 276 

Rayleigh-Ritz, conditions, finite element method, 217 
method, 188 

Reaction concept, 155 
Reaction method of Q measurement, 54, 476-478 
Reaction mode, realization of stabilized TDRO, 491 
Rectangular cross section DR, 467 
Reduced two-port S-matrix, 496 



DIELECTRIC RESONATORS 

Reflection coefficient, at the drain, in parallel feedback, 505 
Reflection method of Q measurement, 53-57 
Refraction index, 220 
Relative permittivity, 68 
see relative dielectric constant 

Resonance condition, Cohn model, 131 
of the shielded DR model, 131 

Resonant cavities, filled with inhomogenous materials, 330-338 
Resonant circuits, lumped-element, 16-20 
Resonant cylindrical dielectric cavity antenna, 310 
Resonant frequencies, absence of losses, 207 
computation by SIE method, 275-281 
frequency, perturbed Cohn model, 138 
leaky modes in parallel-plate resonator, 207 
overestimation, 242 
parallel-plate dielectric resonator, table, 104 
parallel-plate dielectrric resonator, 100 
TE modes in hollow cavity, 32 
TM modes in hollow cavity, 31 
underestimation, 243 

Resonator, DR proper, 187 
system, 187 

Resonators, cavity, 26-42 
transmission line, 21-25 

Richards transformation, table of equivalences, 452 
Richards, 450 
Rigorous analysis, merits and shortcomings, 241 
Ring resonator, 190 
data, zero-order, 228 
Q factor data, 231 
see also isolated resonator 
wave number data, first correction, 229 
wave number data, second correction, 229 

Rotationally symmetric bodies, 270 
Row matrices, symbol for, 8 
Row vectors, symbol for, 8 
Rumsey's reaction concept, 154-155 

S-matrix, 3-port characterization of transistors, 481-483 
DR coupled to microstrip line, 475 
DR coupled to two microstrip lines, 480 
definition, 475 
reduced, of a two-port, 496 

SCREEN 2 command, 168 
SIE, definition, 259 
Scattering parameters, coupling of DR to microstrip, 387 
Search, in the complex frequency plane, 276 
in solution of the pair of transcendental equations, 152 

Semispherical DR, shielded, 342 
Separation of variables, cylindrical coordinates, 72 
hollow cavity, 30 

Series feedback, realization of TDRO, 495-501 
Series oscillator circuit, 494 
Series resonant circuit, unloaded Q factor, 17 
Shapes of DR, 318-321 
Shielded DR, interior modes, 234 
magnetic field lines, 238-240 
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Shielded DR, mixed modes, 234 
resonant frequency versus height of shield, 234 
resonant frequency versus radius of shield, 233 
resonant frequency versus tuning post depth, 235 
classification of modes, 230-232 
meaning of the indices, 191 
exterior modes, 234 

Skin depth, 43, 328 
Slot coupling, 420-421 
Snitzer, 98 
Snyder, 82 
Sommerfeld condition, 70 
Source coordinates, 265 
Spherical DR, shielded, 403 
Spherical wave functions, outside of pillbox resonator, 213 
Splitting of modes, 422 
Spurios responses of DR filters, 469-470 
Spurious modes, TE016 DR filter, 469 
Stability conditions, 484-489 
Stabilization bandwidth, 492 
Stabilized TDRO design, 490-493 
versus stable TDRO design, 490 

Stable TDRO design, 494-506 
Stacked DR, 362-364 
Sturm-Liouville problem, formulation, 196 
Subscripts, modes from the same class, 190 
Surface charge densities, electric and magnetic, 265 
Surface coordinates, on body of revolution, 270 
Surface current coefficient vector, determining the mode indices, 288 
mixed physical units, 287 
partition of, 288 

Surface currents, computation of modal distributions, 286-287 
equivalent, electric and magnetic, 264 

Surface impedance, 43 
Surface integral equations, formulation of, 268-269 
solution of, 270-274 

Surface integration, improvement of the Itoh and Rudokas model, 159 
Surface resistivity, 44 
Symbols, mathematical, 7-8 

TDRO measurements, using network analyzer, 513-518 
TDRO, definition, 473 
TE fields, dielectric rod waveguide, 75 
TE modes in hollow cavity, resonant frequency of, 32 
TE modes, 190 
TE part, hybrid mode in dielectric rod waveguide, 96-97 
TEOll mode, cylindrical cavity, 40-42 
TElll mode, cylindrical cavity, 36-40 
TM fields, dielectric rod waveguide, 75 
TM modes, 190 
in hollow cavity, resonant frequency of, 31 

TM part, hybrid mode in dielectric rod waveguide, 96-97 
TMOlO mode, cylindrical cavity, 33-36 
Technical specifications, materials for DR, 371-375 
Temperature coefficient, of dielectric constant, definition, 347 
of resonant frequency, definition, 347 
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Temperature coefficients, 345-350 
of DRO, 368 

Temperature coefficients, covered DR on microstrip, table, 353 
measurement of, 357-361 

Temperature compensated resonator, 348 
Temperature sensitivity, see temperature coefficient of frequency 
Temperature stability of TDRO, 507-508 
digital compensation, 507 
DRO, 355 

Temperature stabilization of DROs, 362-370 
Template for Q measurement, 57 
Testing functions, 274 
Thomson-CSF Corp., 375 
Three subscripts, mode designation, 190 
Three-port treatment of transistor, parallel feedback, 504 
Time quadrature, of magnetic and electric fields, 136, 301 
Time-domain method of Q measurement, 60 
Trans-Tech, Inc., 374 
Transcendental equation, E type, three dielectric layers, 247, 252 
H type, three dielectric layers, 249, 253 
solution of the pair, 148 

Transformed impedance, computation of coupling, 380, 475 
Transistors, 3-port S-matrix characterization of, 481-483 
Transmission line resonators, 21-25 
Transmission method of Q measurement, 53, 59 
Trapped resonant mode, definition, 198 
Tsironis and Pauker, 364-370 
Tsuji, 136, 213, 280, 285 
Tubular resonator, 301 
see also ring resonator 

Tuning, by dielectric rod, 305 
mechanical, 161-164 

Tuning screw, in TDRO, 161, 509 
band-pass DR filter, 437 

Tuning with dielectric disks, application of SIE, 318 
Tuning with metal rods or plates, application of SIE, 318 
Tuning of TDRO, 509-511 
by bias voltage, 511 
by ferrite, 510 
by varactor, 510 
optical, 512 

Two subscripts, mode designation, 191 
Two terminal pairs, DR in an oscillator circuit, 494 
Two-port treatment of transistor, parallel feedback, 503 

Unconfined modes, 225 
Unit element, band-stop DR filter, 451 
Unit vectors, symbol for, 7 
Unloaded Q factor, 13 
definition of, 332 
parallel resonant circuit, 17 
series resonant circuit, 17 

VIE, definition, 260 
Van Bladel's method, 221 
Van Bladel, 260 
Varactor-tuning of TDRO, 510 
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Variational formula, E-field, 156 
Variational improvement of the Itoh and Rudokas model, 154-160 
Verplanken and Van Bladel, 223, 279 
Vincent, 212 

WAIT command, 167 
Wave number, dielectric, 74 
free space, 74 
radial, 121 
see also propagation constant 

Waveguide propagation constant, 73 
Weighted residual formulation, finite element method, 217 
Wheeler, 46 

Zaki and Atia, 211 
Zaki and Chen, 191, 232, 242 
Zeros, of the Bessel function, 124 
of the derivative of Bessel function, 125 
of the determinant, iteration procedure, 207 


